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Chapter 1. Introduction

1.1. Overview
With the increasing velocity of digital content and the increasing availability of powerful creation and editing
techniques, establishing the provenance of media is critical to ensure transparency, understanding, and ultimately,
trust.

We are witnessing extraordinary challenges to trust in media. As social platforms amplify the reach and influence of
certain content via ever more complex and opaque algorithms, mis-attributed and mis-contextualized content
spreads quickly. Whether inadvertent misinformation or deliberate deception via disinformation, inauthentic content
is on the rise.

Currently, creators who wish to include metadata about their work (for example, authorship) cannot do so in a secure,
tamper-evident and standardized way across platforms. Without this attribution information, publishers and
consumers lack critical context for determining the authenticity of media.

Provenance empowers content creators and editors, regardless of their geographic location or degree of access to
technology, to disclose information about who created or changed an asset, what was changed and how it was
changed. Content with provenance provides indicators of authenticity so that consumers can have awareness of who
has altered content and what exactly has been changed. This ability to provide provenance for creators, publishers
and consumers is essential to facilitating trust online.

To address this issue at scale for publishers, creators and consumers, the Coalition for Content Provenance and
Authenticity (C2PA) has developed this technical specification for providing content provenance and authenticity. It is
designed to enable global, opt-in, adoption of digital provenance techniques through the creation of a rich ecosystem
of digital provenance enabled applications for a wide range of individuals and organizations while meeting
appropriate security requirements.

This specification has been, and continues to be, informed by scenarios, workflows and requirements gathered from
industry experts and partner organizations, including the Project Origin Alliance and the Content Authenticity
Initiative (CAI). It is also possible that regulatory bodies and governmental agencies could utilize this specification to
establish standards for digital provenance.

1.2. Scope
This specification describes the technical aspects of the C2PA architecture; a model for storing and accessing
cryptographically verifiable information whose trustworthiness can be assessed based on a defined trust model.
Included in this document is information about how to create and process a C2PA Manifest and its components,
including the use of digital signature technology for enabling tamper-evidence as well as establishing trust.

Prior to developing this specification, the C2PA created our Guiding Principles that enabled us to remain focused on
ensuring that the specification can be used in ways that respect privacy and personal control of data with a critical
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eye toward potential abuse and misuse. For example, the creators and publishers of the media assets always have
control over whether provenance data is included as well as what specific pieces of data are included.

IMPORTANT

From the overarching goals section of the guiding principles:

C2PA specifications SHOULD NOT provide value judgments about
whether a given set of provenance data is 'good' or 'bad,' merely
whether the assertions included within can be validated as associated
with the underlying asset, correctly formed, and free from tampering.

It is important that the specification does not negatively impact content accessibility for consumers.

Other documents from the C2PA will address specific implementation considerations such as expected user
experiences and details of our threat and harms modelling.

1.3. Technical Overview
The C2PA information comprises a series of statements that cover areas such as asset creation, authorship, edit
actions, capture device details, bindings to content and many other subjects. These statements, called Assertions,
make up the provenance of a given asset and represent a series of trust signals that can be used by a human to
improve their view of trustworthiness concerning the asset. Assertions are wrapped up with additional information
into a digitally signed entity called a Claim.

The W3C Verifiable Credentials of individual actors that are involved in the creation of the assertions can be added to
the C2PA information to provide additional trust signals to the process of assessing trustworthiness of the asset.

These assertions, claims, credentials and signatures are all bound together into a verifiable unit called a C2PA
Manifest by a hardware or software component called a Claim Generator. The set of C2PA Manifests, as stored in the
asset’s C2PA Manifest Store, represent its provenance data.

3

https://www.w3.org/TR/vc-data-model


C2PA Manifest

Assertions

Claim

Claim Signature

Figure 1. A C2PA Manifest and its constituent parts

1.4. Establishing Trust
The basis of making trust decisions in C2PA, our Trust Model, is the identity of the actor associated with the
cryptographic signing key used to sign the claim in the Active Manifest. The identity of a signatory is not necessarily a
human actor, and the identity presented may be a pseudonym, completely anonymous, or pertain to a service or
trusted hardware device with its own identity, including an application running inside such a service or trusted
hardware. C2PA Manifests can be validated indefinitely regardless of whether the cryptographic credentials used to
sign its contents are later expired or revoked.

1.5. An Example
A very common scenario will be a user (called an actor in the C2PA ecosystem) taking a photograph with their C2PA-
enabled camera (or phone). In that instance, the camera would create a manifest containing some such assertions
including information about the camera itself, a thumbnail of the image and some cryptographic hashes that bind the
photograph to the manifest. These assertions would then be listed in the Claim, which would be digitally signed and
then the entire manifest would be embedded into the output JPEG. This manifest would remain valid indefinitely.
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M a n i f e s t  S t o r e

M a n i f e s t
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s t d s . e x i f

c 2 p a . t h u m b n a i l . c l a i m . j p g
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COSE Digital Signature

CBOR structure with references
to the Assertions and the Claim Signature

JSON-LD structure with details of
the camera used to take the photo
and it's GPS location.

Binary Image Data

CBOR structure containing
information about the
cryptographic hashes binding
to the content.

Figure 2. Example C2PA Manifest of a Photograph

A Manifest Consumer, such as a C2PA Validator, could help users to establish the trustworthiness of the asset by first
validating the digital signature and its associated credential. It can also check each of the assertions for validity and
present the information contained in them, and the signature, to the user in a way that they can then make an
informed decision about the trustworthiness of the digital content.

1.6. Design Goals
In the creation of the C2PA architecture, it was important to establish some clear goals for the work to ensure that the
technology was usable across a wide spectrum of hardware and software implementations worldwide and accessible
to all.

Goal Description

Privacy Enable actors to control the privacy of their information, including identity, consumption
data and information recorded in provenance

Responsibility Ensure consumers can determine the provenance of an asset

Scalability Enable creation/consumption/validation of media provenance at the same scale as media
creation/consumption on the web

Extensibility Ensure future metadata and credential providers are able to add their information without
requiring input or approval from the C2PA

Interoperability Ensure that differing implementations are able to operate with each other without ambiguity
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Goal Description

Whole Workflow
Applicability

Maintain the provenance of the asset across multiple tools, from creation through all
subsequent modification and publication/distribution

Technology
Minimalism

Create only the minimum required novel technology in the specification by relying on prior,
well-established techniques

Security Design to ensure that consumers can trust the integrity and source of provenance, and
ensure the design is reviewed by experts

Content Ubiquity Enable the inclusion of provenance for all common media types, including documents

Flexible Locality Enable both online and offline (asset-only) storage and consumption/validation of
provenance

Global Universality Design for the needs of interested users throughout the world

Accessibility Ensure that the technology can be used in a way that conform to recognized accessibility
standards, such as WCAG

Harms and Misuse Design to avert and mitigate potential harms, including threats to human rights and
disproportionate risks to vulnerable groups

Evolving Continuous review of the specification against these goals to ensure that they remain our
priority
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Chapter 2. Glossary

2.1. Introductory terms

2.1.1. Actor

A human or non-human (hardware or software) that is participating in the C2PA ecosystem. For example: a camera
(capture device), image editing software, cloud service or the person using such tools.

NOTE An organization or group of actors may also be considered an actor in the C2PA ecosystem.

2.1.2. Signer

An actor (human or non-human) whose credential’s private key is used to sign the claim. The signer is identified by the
subject of the credential.

2.1.3. Claim generator

The non-human (hardware or software) actor that generates the claim about an asset as well as the claim signature,
thus leading to the asset's associated manifest.

2.1.4. Manifest consumer

An actor who consumes an asset with an associated manifest for the purpose of obtaining the provenance data from
the manifest.

2.1.5. Validator

A manifest consumer whose role is to perform the actions described in Chapter 16, Validation.

2.1.6. Action

An operation performed by an actor on an asset. For example, "create", "embed", or "apply filter".

2.2. Assets and Content

2.2.1. Digital content

The portion of an asset that represents the actual content, such as the pixels of an image, along with any additional
technical metadata required to understand the content (e.g., a colour profile or encoding parameters).
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2.2.2. Asset metadata

The portion of an asset that represents non-technical information about the asset and its digital content, as may be
stored via standards such as Exif or XMP.

2.2.3. Asset

A file or stream of data containing digital content, asset metadata and optionally, a C2PA Manifest.

NOTE
For the purposes of this definition, we will extend the typical definition of "file" to include cloud-
native and dynamically generated data.

2.2.4. Derived asset

A derived asset is an asset that is created by starting from an existing asset and performing actions to it that modify its
digital content and asset metadata.

EXAMPLE: An audio stream that has been shortened or a document where pages have been added.

2.2.5. Asset rendition

A representation of an asset (either as a part of an asset or a completely new asset) where the digital content has had a
'non-editorial transformation' action (e.g., re-encoding or scaling) applied but where the asset metadata has not been
modified.

EXAMPLE: A video file that is re-encoded for reduced screen resolution or network bandwidth.

2.2.6. Composed asset

A composed asset is an asset that is created by building up a collection of multiple parts or fragments of digital
content (referred to as ingredients) from one or more other assets. When starting from an existing asset, it is a special
case of a derived asset - however a composed asset can also be one that starts from a "blank slate".

EXAMPLES:

• A video created by importing existing video clips and audio segments into a "blank slate".

• An image where another image is imported and super-imposed on top of the starting image.
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2.3. Core Aspects of C2PA

2.3.1. Assertion

A data structure which represents a statement asserted by an actor concerning the asset. This data is a part of the
C2PA Manifest.

2.3.2. Claim

A digitally signed and tamper-evident data structure that references a set of assertions by one or more actors,
concerning an asset, and the information necessary to represent the content binding. If any assertions were redacted,
then a declaration to that effect is included. This data is a part of the C2PA Manifest.

2.3.3. Claim signature

The digital signature on the claim using the private key of an actor. The claim signature is a part of the C2PA Manifest.

2.3.4. C2PA Manifest

The set of information about the provenance of an asset based on the combination of one or more assertions
(including content bindings), a single claim, and a claim signature. A C2PA Manifest is part of a C2PA Manifest Store.

NOTE A C2PA Manifest can reference other C2PA Manifests.

2.3.5. C2PA Manifest Store

A collection of C2PA Manifests that can either be embedded into an asset or be external to its asset.

2.3.6. Origin

The C2PA Manifest in the provenance data which represents the software or device that initially created the asset.

NOTE Details on how one determines which C2PA Manifest is the origin are left for specification.

2.3.7. Active Manifest

The last manifest in the list of C2PA Manifests inside of a C2PA Manifest Store which is the one with the set of content
bindings that are able to be validated.

2.3.8. Provenance

The logical concept of understanding the history of an asset and its interaction with actors and other assets, as
represented by the provenance data.
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2.3.9. Provenance data

The set of C2PA Manifests for an asset and, in the case of a composed asset, its ingredients.

NOTE A C2PA Manifest can reference other C2PA Manifests.

2.3.10. Authenticity

A property of digital content comprising a set of facts (provenance data and hard bindings) that can be
cryptographically verified as not having been tampered with.

2.3.11. Content binding

Information that associates digital content to a specific C2PA Manifest associated with a specific asset, either as a hard
binding or a soft binding.

2.3.12. Hard binding

One or more cryptographic hashes that uniquely identifies either the entire asset or a portion thereof.

2.3.13. Soft binding

A content identifier that is either (a) not statistically unique, such as a fingerprint, or (b) embedded as a watermark in
the identified digital content.

2.3.14. Trust signals

The collection of information that can inform an actor’s judgment of the trustworthiness of an asset. These are in
addition to the signer of a claim, upon which the fundamental trust model relies.

2.4. Additional Terms

2.4.1. Fingerprint

A set of inherent properties computable from digital content that identifies the content or near duplicates of it.

EXAMPLE: An asset can become separated from its manifest due to removal or corruption of asset metadata. A
fingerprint of the digital content of the asset could be used to search a database to recover the asset with an
intact manifest.

2.4.2. Watermark

Information incorporated into the digital content (perceptibly or imperceptibly) of an asset which can be used, for
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example, to uniquely identify the asset or to store a reference to a C2PA Manifest.

2.4.3. Manifest Repository

A repository into which C2PA Manifests and C2PA Manifest Stores can be placed, and which can be searched using a
content binding.

2.5. Overview
This image shows how all these various elements come together to represent the C2PA architecture.

Figure 3. Elements of C2PA
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Chapter 3. Normative References

3.1. Core Formats
• CBOR

• JSON

• JSON-LD

• JPEG universal metadata box format (JUMBF)

• W3C Verifiable Credentials Data Model

3.2. Schemas
• CDDL

• JSON Schema

• Dublin Core Metadata Initiative

3.3. Digital & Electronic Signatures
• X.509 Certificates

• JSON Web Algorithms (JWA)

• CBOR Object Signing and Encryption (COSE)

• Using RSA Algorithms with COSE Messages

• Online Certificate Status Protocol (OCSP)

• Internet X.509 PKI Time-Stamp Protocol

• CBOR Object Signing and Encryption (COSE): Header Parameters for Carrying and Referencing X.509 Certificates

• Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile

• Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers for DSA and ECDSA

• Algorithm Identifiers for Ed25519, Ed448, X25519, and X448 for Use in the Internet X.509 Public Key Infrastructure

• PKCS #1: RSA Cryptography Specifications Version 2.2

• Edwards-Curve Digital Signature Algorithm (EdDSA)

• JSON Advanced Electronic Signatures (JAdES)

• US Secure Hash Algorithms

• X.509 Certificate General-Purpose Extended Key Usage (EKU) for Document Signing

12

https://tools.ietf.org/html/rfc8949
https://tools.ietf.org/html/rfc8259
https://www.w3.org/TR/json-ld11/
https://www.iso.org/standard/73604.html
https://www.w3.org/TR/vc-data-model/
https://datatracker.ietf.org/doc/html/rfc8610
https://json-schema.org/specification-links.html#2020-12
https://www.dublincore.org/specifications/dublin-core/dces/
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8230
https://tools.ietf.org/html/rfc6960
https://tools.ietf.org/html/rfc3161
https://datatracker.ietf.org/doc/html/rfc9360
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc5758
https://tools.ietf.org/html/rfc8410
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8032
https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010101p.pdf
https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/rfc/rfc9336


• RFC 6170

3.4. Embeddable Formats
• ISO Base Media File Format (BMFF)

• PDF 1.7

• PDF 2.0

• JPEG 1

• JPEG XT, ISO/IEC 18477-3

• PNG

• SVG

• GIF

• ID3

• Digital Negative or DNG

• TIFF/EP

• TIFF v6)

• RIFF

• Multi-Picture Format (MPF)

3.5. Other
• eXtensible Metadata Platform (XMP)

• JSON-LD serialization of XMP

• IPTC Photo Metadata Standard

• Exif

• UUID

• ISO 8601

• RFC 2326

• Media Fragments
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https://www.iso.org/standard/51502.html
https://www.iso.org/standard/75839.html
https://www.iso.org/standard/18902.html
https://www.iso.org/standard/66071.html
https://www.w3.org/TR/2003/REC-PNG-20031110/
https://www.w3.org/TR/SVG11/
https://www.w3.org/Graphics/GIF/spec-gif89a.txt
https://id3.org/id3v2.3.0
https://helpx.adobe.com/content/dam/help/en/photoshop/pdf/dng_spec_1_6_0_0.pdf
https://www.iso.org/standard/29377.html
https://www.itu.int/itudoc/itu-t/com16/tiff-fx/docs/tiff6.pdf
https://www.loc.gov/preservation/digital/formats/fdd/fdd000025.shtml
https://www.cipa.jp/e/std/std-sec.html
https://www.iso.org/standard/75163.html
https://www.iso.org/standard/79384.html
http://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata
https://www.cipa.jp/std/documents/download_e.html?DC-008-Translation-2019-E
https://tools.ietf.org/html/rfc4122
https://www.iso.org/iso-8601-date-and-time-format.html
https://www.ietf.org/rfc/rfc2326.txt
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Chapter 4. Standard Terms
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in BCP 14, RFC 2119, and RFC 8174 when they appear in any casing (upper, lower or mixed).
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Chapter 5. Version History
1.3 - April 2023

• New v2 version of the Action assertion with support for many new options

• New v2 version of the Ingredient assertion with support for embedded data

• New Asset Reference & Asset Type assertions

• New Data boxes, for storing arbitrary data inside the Manifest

• New generic box hash methodology for a more inclusive byte range hashing

• New "Regions of Interest" data structures that can be applied to various assertions

• Added document signing EKU as an alternative default EKU for C2PA signers when a validator is not configured
with an EKU list

• Added a new digitalSourceType field for use by C2PA

• Added support for many new formats: MPF, WebP, AIFF, AVI, GIF

• Updated Entity diagram to reflect additions since 1.0

• Updated COSE header definition for X.509 certificates to RFC 9360

• Updated the guidance on PDF embedding and its relationship to PDF signatures

• Updated information about JUMBF hashing and JUMBF box toggles

• Deprecated v1 of the BMFF Hash

• Clarified use of the JUMBF Protection Box in a C2PA Manifest

• Clarified C2PA-specific requirement that all intermediate X.509 certificates be included in COSE signatures

• Clarified that time-stamps are valid indefinitely

• LOTS of editorial improvements!!

1.2 - October 2022

• Added details about how to embed a C2PA Manifest in DNG or TIFF

• Added new digitalSourceType field to Actions

• Changed stds.iptc.photometadata → stds.iptc to support IPTC video metadata

• Clarified versioning of assertions when adding optional fields

1.1 - September 2022

• Define a mechanism to support salting box hashing

• New c2pa.hash.bmff.v2 assertion, with changes to hashing model, to improve security
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• Enable assertion metadata for the Claim

• Replaced claim_generator_hints with claim_generator_info

• Added a new assertion to support the concept of Endorsements

• Improvements to the c2pa.actions assertion

• All Error & Status Codes are now prefixed with c2pa

• Define mechanism for redaction of W3C VC’s

• Clarify validation of EKUs in certificates

• Validation algorithm revised to reflect technical changes

• Corrections to the CDDL and JSON schemas to match normative text

• Revise figures to reflect changes

• Various Editorial and Typographical Corrections

• Update Normative References (incl. JUMBF & W3C VC Data Model)

1.0 - December 2021

• Initial Release
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Chapter 6. Assertions

6.1. General
It is expected that each of the actors in the system that creates or processes an asset will produce one or more
assertions about when, where, and how the asset was originated or transformed. An assertion is labelled data,
typically (though not required to be) in a CBOR-based structure which represents a declaration made by an actor
about an asset. Some of these actors will be human and add human-generated information (e.g., copyright) while
other actors are machines (software/hardware) providing the information they generated (e.g., camera type).

Some examples of assertions are:

• Exif information (e.g. camera information such as maker, lens)

• Actions performed on the asset (e.g., clipping, color correction)

• Thumbnail of the asset or its ingredients

• Content bindings (e.g., cryptographic hashes)

Certain assertions may be redacted by subsequent claims (see Section 6.7, “Redaction of Assertions”), but they
cannot be modified once made as part of a claim.

6.2. Labels
Each assertion has a label defined either by the C2PA specifications or an external entity.

Labels are string values organized into namespaces using a period (.) as a separator. The namespace component of
the label can be an entity, or a reference to a well-established standard (see ABNF below). The most common labels
will be defined by the C2PA and will begin with c2pa.. Entity-specific labels shall begin with the Internet domain
name for the entity similar to how Java packages are defined (e.g., com.litware, net.fineartschool). Well-
established standards can use the "stds." prefix when describing their namespace. They are also versioned with a
simple incrementing integer scheme (e.g., c2pa.actions.v2). If no version is provided, it is considered as v1. The
list of publicly known labels can be found in Chapter 19, C2PA Standard Assertions.

namespaced-label = qualified-namespace label
qualified-namespace = entity / ( "stds."  std-name )
entity = 1*( DIGIT / ALPHA / "-" )
std-name = 1*( DIGIT / ALPHA / "-" )
label = 1*("." 1(ALPHA / "_" ) *( DIGIT / ALPHA / "_" ) )

The period-separated components of a label follow the variable naming convention ([a-zA-Z_][a-zA-Z0-9_]*)
specified in the POSIX or C locale, with the restriction that the use of a repeated underscore character (__) is reserved
for labelling multiple assertions of the same type.
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6.3. Versioning
When an assertion’s schema is changed, it should be done in a backwards-compatible manner. This means that new
fields may be added and existing ones may be marked as deprecated (i.e., can be read, but never written). Existing
fields shall not be removed. The label would then consist of an incremented version number, for example moving
from c2pa.hash.bmff (deprecated) to c2pa.hash.bmff.v2.

Since the addition of optional fields can be done while maintaining backwards compatibility, such fields may be
added to an existing assertion’s schema without a change to the version number.

IMPORTANT

The schemas provided in this document, as well as the machine readable ones that can be
downloaded from our website, should only be used for aids in understanding the syntax to be
read or written. It is not necessary, nor it is recommended, for a Manifest Consumer to
perform any form of schema validation when reading in assertions.

Deprecated fields for C2PA standard assertions shall be indicated in Chapter 19, C2PA Standard Assertions. Tools
which enable actors to create assertions shall prevent the actor from inserting data into deprecated assertion fields.

In addition, there are situations where a non-backwards compatible change is required. In that case, instead of
increasing the label’s version number, the assertion shall be given a new label. For example, c2pa.ingredient
could be changed to the fictional c2pa.component.

6.4. Multiple Instances
Multiple assertions of the same type can occur in the same manifest, but since assertions are referenced by claims via
their label, the assertion labels must be unique. This is accomplished by adding a double-underscore and a
monotonically increasing index to the label. For example, if a manifest contains a single assertion of type
stds.schema-org.CreativeWork, then the assertion label will be stds.schema-org.CreativeWork. If a
manifest contains three assertions of this type, the labels will be stds.schema-org.CreativeWork,
stds.schema-org.CreativeWork__1 and stds.schema-org.CreativeWork__2.

When a label includes a version number, that version number is part of the label itself. As such, when there are
multiple instances, the instance number continues to follow the label - e.g., c2pa.ingredient.v2__2.

6.5. Assertion Store
The set of assertions referenced by a claim in a manifest are collected together into a logical construct that is referred
to as the assertion store. The assertions and assertion store shall be stored as described in Section 12.1, “Use of
JUMBF”; in particular, the assertion store shall be located in the same C2PA Manifest box as the claim that refers to its
assertions.

For each manifest, there is a single assertion store associated with it. However, as an asset may have multiple
manifests associated with it, each one representing a specific series of assertions, there may be multiple assertion
stores associated with an asset.
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6.6. Embedded vs Externally-Stored Data
Some assertion data, due to its size or an infrequent need for it, may be externally hosted. Such data are not
embedded in the assertion store, but instead are referenced by URI. This is accomplished through a cloud data
assertion (see Section 19.10, “Cloud Data”). Unlike embedded assertion data, cloud data is not retrieved nor validated
as part of manifest validation, and are only retrieved and validated when specifically needed by an application
according to a different set of validation rules as described in Section 16.7, “Validate the Assertions”.

6.7. Redaction of Assertions
Assertions that are present in an asset-embedded manifest may be removed from that asset’s manifest when the
asset is used as an ingredient. This process is called redaction.

Redaction involves removing either the entire assertion from the manifest’s assertion store or retaining the labelled
assertion container but replacing its data with zeros (binary \0 values). In addition, a record that something was
removed must be added to the claim in the form of a URI reference to the redaction assertion in the
redacted_assertions field of the claim. It is also strongly recommended that the claim generator should add a
c2pa.redaction action assertion with a redacted field as described in Section 19.12.2, “Parameters”.

NOTE
Because each assertion’s URI reference includes the assertion label, it is also known what type of
information (e.g., thumbnail, IPTC metadata, etc.) was removed. This enables both humans and
machines to apply rules to determine if the removal was acceptable.

Unless the redaction of the assertion also requires modification to the digital content, an update manifest shall be
used to document the redaction as it makes a statement about the non-changes to the content.

Claims generators shall not redact assertions with a label of c2pa.actions as this assertion type represents
essential information in understanding the history of an asset.

19



Chapter 7. Data Boxes
Data boxes provide a way to include arbitrary data into the C2PA Manifest that is referenced from an assertion,
instead of embedding it directly into a field of the assertion as a binary string. These data boxes are placed in the Data
Box Store and each one will be a single CBOR Content Type box (cbor).

The data of a data box is provided directly as the value of the data field, which is a bstr, so any binary data can be
provided. The type of the data shall be identified using the dc:format field, with a standard IANA media type.

NOTE
IANA structured suffixes, such as +json and +zip, are also supported as values of the dc:format
field.

Sometimes, it may also be necessary to provide one or more asset types as the value of the data_types field for
more clarity on the format and usage of that data.

A data box shall have a label of c2pa.data and follows the rules of assertion labels with respect to multiple
instances.

7.1. Schema and Example
The schema for this type is defined by the data-box-map rule in the following CDDL Definition:

; box allowing for the storage of arbitrary data

data-box-map = {
  "dc:format": format-string, ; IANA media type of the data
  "data" : bstr, ; arbitrary text/binary data
  ? "data_types": [1* $asset-type-map],  ; additional information about the data's type
}
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Chapter 8. Unique Identifiers
Every asset that is referenced by the claim shall be referenced via a unique identifier. In addition, these identifiers are
used in various parts of a C2PA-enabled workflow, such as when identifying it as an ingredient in a derived or
composed asset.

8.1. Using XMP
When an asset contains embedded XMP, that XMP shall include (at least) values for xmpMM:DocumentID and
xmpMM:InstanceID as defined in XMP Specification Part 2, 2.2. If an asset does not contain XMP at the time a claim
is made, and the type of the asset supports it, an embedded XMP packet may be created as part of the process, and
the identifiers shall be added to it.

NOTE

NOTE 1

Some asset types are not suited for embedded XMP (e.g., text). It is possible to create XMP as a
sidecar.

8.2. Other Identifiers
Instead of using XMP, a unique identifier for an asset could be a URI defined by standards such as Decentralized
Identifiers (DID), Handle, EIDR and DOI.

Another standard unique identifier for an asset could be the cryptographic hash of the asset. When this method is
used, the hash shall be represented using a standard RFC 4122 UUID following the recommendations at
https://datatracker.ietf.org/doc/html/draft-thiemann-hash-urn-01 .

NOTE
EDITORS NOTE

Other methods may be defined here as they are developed.

8.3. URI References
All references to information in the manifest, whether stored internally to the asset (i.e., embedded) or stored
externally to the asset (e.g., in the cloud), shall be referenced via JUMBF URI references as defined in ISO 19566-5, C.2.
These URIs shall be used either as part of a hashed_uri or hashed_ext_uri data structure.

8.3.1. Hashed URIs

8.3.1.1. Embedded

A hashed_uri is used when the URI is for something embedded in the same manifest store.

{
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  "$schema": "https://json-schema.org/draft/2020-12/schema",
  "$id": "http://ns.c2pa.org/hashed-uri/v1",
  "type": "object",
  "description": "The data structure used to store a reference to a local URL and its hash",
  "$defs": {
    "JUMBF_URI": {
      "$id": "#JUMBF_URI",
      "description": "JUMBF URI reference",
      "type": "string",
      "pattern": "^self#jumbf=[\\w\\d][\\w\\d\\./:-]+[\\w\\d]$"
    }
  },
  "examples": [
    {
      "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.assertions/c2pa.actions",
      "alg": "sha256",
      "hash": "hoOspQQ1lFTy/4Tp8Epx670E5QW5NwkNR+2b30KFXug="
    }
  ],
  "required": ["url", "hash"],
  "properties": {
    "url": {
      "$ref": "#/$defs/JUMBF_URI",
      "description": "JUMBF URI reference"
    },
    "alg": {
      "type": "string",
      "minLength": 1,
      "description": "A string identifying the cryptographic hash algorithm used to compute
all hashes in this claim, taken from the C2PA hash algorithm identifier list. If this field
is absent, the hash algorithm is taken from an enclosing structure as defined by that
structure. If both are present, the field in this structure is used. If no value is present
in any of these places, this structure is invalid; there is no default."
    },
    "hash": {
      "type": "string",
      "minLength": 1,
      "description": "CBOR byte string containing the hash value"
    }
  },
  "additionalProperties": false
}

This specification provides an equivalent hashed-uri-map data structure for schemas defined using CDDL:

; The data structure used to store a reference to a URL within the same JUMBF and its hash.
We use a socket/plug here to allow hashed-uri-map to be used in individual files without
having the map defined in the same file
$hashed-uri-map /= {
  "url": url-regexp-type, ; JUMBF URI reference
  ? "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute all hashes in this claim, taken from the C2PA hash algorithm
identifier list. If this field is absent, the hash algorithm is taken from an enclosing
structure as defined by that structure. If both are present, the field in this structure is
used. If no value is present in any of these places, this structure is invalid; there is no
default.
  "hash": bstr, ;  byte string containing the hash value
}
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; with CBOR Head (#) and tail ($) are introduced in regexp, so not needed explicitly
url-regexp-type  /= tstr .regexp "self#jumbf=[\\w\\d][\\w\\d\\.\/:-]+[\\w\\d]"

Because assertion stores shall be located in the same C2PA Manifest box as the claim that refers to them, only
self#jumbf URIs are permitted. These self#jumbf URIs may be relative to the entire C2PA Manifest Store, in
which case they shall start with a / (U+002F, Slash), or relative to the current C2PA Manifest. URIs shall not contain the
sequence .. (a pair of U+002E, Full Stop).

EXAMPLES:

• self#jumbf=/c2pa/urn:uuid:f095f30e-6cd5-4bf7-8c44-
ce8420ca9fb7/c2pa.assertions/c2pa.thumbnail.claim.jpeg is relative to the entire store (since
it starts with /),

• self#jumbf=c2pa.assertions/c2pa.thumbnail.claim.jpeg would be relative to the manifest of
the box containing the URI.

8.3.1.2. External

When referring to a resource that exists externally to the manifest store, a hashed-ext-uri-map data structure is
used. It is a variation on the hashed-uri, in that it references an external URI instead of a self#jumbf. The
hashed-ext-uri data structure is defined by the hashed-ext-uri-map rule in the following CDDL:

; The data structure used to store a reference to an external URL and its hash. We use a
socket/plug here to allow hashed-ext-uri-map to be used in individual files without having
the map defined in the same file
$hashed-ext-uri-map /= {
  "url": ext-url-regexp-type, ; http/https URI reference
  "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute all hashes in this claim, taken from the C2PA hash algorithm
identifier list. Unlike alg fields in other types, this field is mandatory here.
  "hash": bstr, ;  byte string containing the hash value
  ? "dc:format": format-string, ; IANA media type of the data
  ? "size": size-type, ; Number of bytes of data
  ? "data_types": [1* $asset-type-map],  ; additional information about the data's type
}

; with CBOR Head (#) and tail ($) are introduced in regexp, so not needed explicitly
ext-url-regexp-type  /= tstr .regexp "https?:\/\/[-a-zA-Z0-9@:%._\\+~#=]{2,256}\\.[a-
z]{2,6}\\b[-a-zA-Z0-9@:%_\\+.~#?&//=]*"

NOTE

In keeping with common practice, it is recommended that the https scheme be used to retrieve
assertion data to protect the privacy of the data in transit, but http is also permitted because the
data’s integrity is protected by the hash field and this privacy may not be required in all
circumstances. Authors of manifests with external URIs should choose the scheme to suit their
needs.

The optional dc:format field, when present, provides an alternative to the Content-Type field of the http(s)
headers. If present, this field shall be used as the required format retrieved during any content negotiate/request.
Sometimes, it may also be necessary to provide one or more asset types as the value of the data_types field for
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more clarity on the format and usage of that data.

An optional size field is also provided to specify the size of the data to be retrieved. This may be useful to a Manifest
Consumer as a hint as to whether to attempt downloading and/or for validation purposes, in addition to the hash.

8.3.1.3. Hashing JUMBF Boxes

When creating a URI reference to an assertion (i.e., as part of constructing a Claim), a W3C Verifiable Credential or
other C2PA structure stored as a JUMBF box, the hash shall be performed over the contents of the structure’s JUMBF
superbox, which includes both the JUMBF Description Box and all content boxes therein (but does not include the
structure’s JUMBF superbox header).

NOTE More details on hashing can be found at Section 14.1, “Hashing”.

As described in the forthcoming dated revision to JUMBF (ISO 19566-5:2023), a new Private field can be present as
part of any JUMBF Description box. This C2PA specification defines the C2PA salt as a Private field whose value is a
standard box consisting of:

• a box length (LBox, as a 4-byte big-endian unsigned integer)

• a box type (TBox, 4-byte big-endian unsigned integer, with a value of c2sh (for C2PA salt hash))

• and payload data (consisting of randomly-generated binary data of either 16 or 32 bytes in length).

Figure 4. Example c2pa.actions assertion
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Chapter 9. W3C Verifiable Credentials

9.1. General
In some use cases, the actors in the system may wish to provide their own W3C Verifiable Credential, as they exist at
that moment in time, to the claim generator to have them associated with one or more assertions. These actors may
be individuals, groups or organizations.

W3C Verifiable Credentials are used in this specification to decorate the actors identified in assertions with more
information, potentially providing additional trust signals. Although these W3C Verifiable Credentials can include
proofs of their own authenticity, they are not a mechanism for verifying that a particular actor authorised a claim,
assertion or piece of metadata. Any validation or usage of the W3C Verifiable Credential is out of scope of this
specification and has no bearing on the C2PA Trust Model.

For example, conveying a W3C Verifiable Credential for the actor identified as the author in an assertion might link
that author’s ID with an email address, social media ID, or real name, or it might identify that actor as a member of a
particular professional body, or provide other qualifications relevant to the actor’s involvement in the asset.

Such credentials shall be compliant with the W3C Verifiable Credentials Data Model using the JSON-LD serialisation
described there.

NOTE
JSON-LD serialization is mandated as it is the most commonly used of the three syntaxes presented
in section 6 of the W3C Verifiable Credentials specification. It is also the one that aligns best with its
extensibility model, which could be useful to some implementers.

An example of a compliant credential for an individual might be one issued by the National Press Photographers
Association (NPPA), which links an identifier for a person to their name ("John Doe") and a statement about their
membership of the NPPA. It might look like:

{
  "@context": [
    "https://www.w3.org/2018/credentials/v1",
    "http://schema.org"
  ],
  "type": [
    "VerifiableCredential",
    "NPPACredential"
  ],
  "issuer": "https://nppa.org/",
  "credentialSubject": {
    "id": "did:nppa:eb1bb9934d9896a374c384521410c7f14",
    "name": "John Doe",
    "memberOf": "https://nppa.org/"
  },
  "proof": {
    "type": "RsaSignature2018",
    "created": "2021-06-18T21:19:10Z",
    "proofPurpose": "assertionMethod",
    "verificationMethod":
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"did:nppa:eb1bb9934d9896a374c384521410c7f14#_Qq0UL2Fq651Q0Fjd6TvnYE-faHiOpRlPVQcY_-tA4A",
    "jws": "eyJhbGciOiJQUzI1NiIsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjY0Il19
      DJBMvvFAIC00nSGB6Tn0XKbbF9XrsaJZREWvR2aONYTQQxnyXirtXnlewJMB
      Bn2h9hfcGZrvnC1b6PgWmukzFJ1IiH1dWgnDIS81BH-IxXnPkbuYDeySorc4
      QU9MJxdVkY5EL4HYbcIfwKj6X4LBQ2_ZHZIu1jdqLcRZqHcsDF5KKylKc1TH
      n5VRWy5WhYg_gBnyWny8E6Qkrze53MR7OuAmmNJ1m1nN8SxDrG6a08L78J0-
      Fbas5OjAQz3c17GY8mVuDPOBIOVjMEghBlgl3nOi1ysxbRGhHLEK4s0KKbeR
      ogZdgt1DkQxDFxxn41QWDw_mmMCjs9qxg0zcZzqEJw"
  }
}

A W3C Verifiable Credential used with C2PA shall contain only a single credentialSubject and that
credentialSubject shall have an id value.

NOTE

Although the example above and many examples in the W3C Verifiable Credentials data model
specification use Decentralized Identifiers (DIDs) as the value of the id field, DIDs are not necessary
for W3C Verifiable Credentials to be useful. Specifically, W3C Verifiable Credentials do not depend on
DIDs and DIDs do not depend on W3C Verifiable Credentials. DID-based URLs are just one way to
express identifiers associated with subjects, issuers, holders, credential status lists, cryptographic
keys, and other machine-readable information associated with a W3C Verifiable Credential.

9.2. VCStore
The set of credentials in a manifest are collected together into a logical construct that is referred to as the credential
store or VCStore (for short) and it shall be stored as described in Section 12.1, “Use of JUMBF”. Just as with the
assertion store, the VCStore shall always be included/embedded in the JUMBF - it is not stored separately.

For each manifest, there is a VCStore associated with it. However, as an asset may have multiple manifests associated
with it, there may be multiple VCStores associated with an asset.

9.3. Using Credentials
Some assertions, such as Creative Work and Actions, may contain references to Persons or Organisations which are
responsible for various roles and responsibilities. These references to Actors are defined in
[_common_data_model_actor].

{
  "@context": "http://schema.org/",
  "@type": "CreativeWork",
  "copyrightHolder": {
    "name": "Example Corp",
    "legalName": "The Example Corporation",
    "identifier": "https://www.example.com/",
    "credential": [
      {
        "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.credentials/https://www.example.com/",
        "alg": "sha256",
        "hash": "Auxjtmax46cC2N3Y9aFmBO9Jfay8LEwJWzBUtZ0sUM8gA"
      }
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    ]
  },
  "copyrightYear": 2021,
  "copyrightNotice": "Copyright © 2021 Example Corp."
}

9.4. Credential Security Considerations
In most W3C Verifiable Credential workflows, the information about the subject (e.g., the cryptographic keys) is
fetched on demand at the time of validation. While that is an acceptable model, it does open up a possible attack
vector by providing an attacker with an externally-visible signal about what the validator is validating. Therefore,
C2PA also supports having the information captured and embedded at the time of signature. This not only prevents
leakage, but also makes it very clear what data the signer is asserting about the credential’s subject.

9.5. Redaction of Credentials
Since a W3C Verifiable Credential can contain personally identifiable information, there may be workflows where it is
necessary to remove/redact a W3C Verifiable Credential from the VCStore. To redact a W3C Verifiable Credential, a
claim generator shall overwrite the contents of the credential in the W3C Credential Store with all zeroes, just as one
would when redacting an assertion, however, doing only that will cause validation failures later on since the
hashed_uri to the W3C Verifiable Credential will fail to resolve causing a validation failure. To fully redact a W3C
Verifiable Credential, the associated (referencing) assertion would also need to be redacted.
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Chapter 10. Binding to Content

10.1. Overview
A key aspect to the standard C2PA manifest is the presence of one or more data structures, called content bindings,
that can uniquely identify portions of the asset. There are two types of bindings that are supported by C2PA - hard
bindings and soft bindings. A hard binding (also known as a cryptographic binding) enables the validator to ensure
that (a) this manifest belongs with this asset and (b) that the asset has not been modified, by determining values that
can match only this asset and no other, not even other assets derived from it or renditions produced from it. A soft
binding is computed from the digital content of an asset, rather than its raw bits. A soft binding is useful for identifying
derived assets and asset renditions.

A single manifest shall not contain more than one assertion defining a hard binding.

10.2. Hard Bindings

10.2.1. Hashing using byte ranges

The simplest type of hard binding that can be used to detect tampering is a cryptographic hashing algorithm, as
described in Section 14.1, “Hashing”, over some or all of the bytes of an asset. This approach can be used on any type
of asset.

When using this form of hard binding, one or more data hash assertions is used to define the range of bytes that are
hashed (and those that are not). Because each data hash assertion defines a byte range and optional URL, it is flexible
enough to be usable whether the asset is a single binary or represented in multiple chunks or portions, local or
remote.

10.2.2. Hashing a BMFF-formatted asset

If the asset is based on ISO BMFF then a hard binding optimized for the box-based format (called BMFF-based hash
assertions) may be used instead.

For a monolithic MP4 file asset where the mdat box is validated as a unit, the assertion is validated nearly identically
to a data hash assertion. It simply uses a box exclusion list instead of byte ranges to define the range of bytes that are
hashed (and those that are not).

For a monolithic MP4 file asset where the mdat box is validated piecemeal or an asset composed of fragmented MP4
(fMP4) files, the assertion itself must be combined with chunk-specific hashing information which is located as
specified in Section 12.3.2, “Embedding manifests into BMFF-based assets”. Validating a given chunk requires first
validating the merkle field’s initHash over the corresponding initialization segment and then locating the correct
entry in the merkle field’s hashes array and validating it against the hash of the chunk’s data plus (if needed)
deriving the hash using the other hashes specified in the chunk’s C2PA-specific box.
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Figure 5. Validating the initialization segment

Figure 6. Validating the chunk’s data

10.2.3. Asset Metadata Bindings

In those workflows which embed asset metadata into the asset, such asset metadata should not be excluded by data
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hash assertions.

This means that by default all asset metadata (including Exif metadata and IPTC metadata in either IPTC-IIM or XMP
format) will be included in the data hash assertions, but with no provenance information such as who made the
claims.

To explicitly assert the same claims in a C2PA assertion with verifiable provenance, the Exif or IPTC fields should be
copied to a stds.exif or stds.iptc.photo-metadata assertion, as appropriate (see Section 19.16, “Exif
Information” and [_iptc_photo_metadata]).

NOTE
We recommend that existing Exif, IPTC-IIM and/or XMP asset metadata be left untouched in the
asset. This will allow for compatibility with tools which do not yet support C2PA metadata.

10.3. Soft Bindings
Soft bindings are described using soft binding assertions such as via a perceptual hash computed from the digital
content or a watermark embedded within the digital content. These soft bindings enable digital content to be
matched even if the underlying bits differ, for example due to an asset rendition in a different resolution or encoding
format. Additionally, should a C2PA manifest be removed from an asset, but a copy of that manifest remains in a
provenance store elsewhere, the manifest and asset may be matched using available soft bindings.

Because they serve a different purpose, a soft binding shall not be used as a hard binding.

All soft bindings shall be generated using one of the algorithms listed as supported by this specification. This section
is intended to provide:

• A list of algorithms that are allowed for generating soft bindings of new content as well as required for validating
or locating existing content (the allowed list), and

• A list of algorithms that are required to be supported for validating or locating existing content but are not
allowed for generating soft bindings of new content (the deprecated list).

10.3.1. Pre-defined

There are no soft binding algorithms defined in the approved list nor in the deprecated list in this version of the
specification.

NOTE

The C2PA is currently evaluating various soft binding algorithms. One of the many possible options
includes the ISCC - International Standard Content Code. The ISCC is an identifier and fingerprint for
digital assets that supports all major content types (e.g., text, image, audio, video). The ISCC uses is
similarity-preserving hashes generated both from metadata and content.

10.3.2. Future Requirements

This list of allowed algorithms will define the string algorithm identifier to be used as the algorithm identifier in the
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corresponding field and the content types over which it is applicable. In cases where there are different versions of an
algorithm, each will be defined using different string algorithm identifiers. Any technical documentation sufficient for
the soft binding algorithm to be uniquely identified and utilized, should be referenced.

Each algorithm should be defined along with the names and values of all parameters affecting the operation of that
algorithm. When doing so, it shall describe the manner in which those parameters must be encoded within the alg-
params field of the soft binding assertion. An algorithm that is instantiated over a different parameter set will be
considered a different algorithm.

Each algorithm may also define an encoding scheme for specifying the portion of digital content over which a soft
binding is computed (namely, the extent field of the scope object within the soft binding assertion). An algorithm
that encodes the extent differently will be considered a different algorithm.

It is recommended that the string identifiers for soft binding algorithms conform to how they are referred to in
common practice.
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Chapter 11. Claims

11.1. Overview
A claim gathers together all the assertions about an asset from an actor at a given time including the set of assertions
for binding to the content. The claim is then cryptographically hashed and signed as described in Section 11.3.2.4,
“Signing a Claim”. A claim has all the same properties as an assertion including being assigned the label
(c2pa.claim) and supporting the use of assertion metadata. It encoded as CBOR data, and such, shall comply with
the "Core Deterministic Encoding Requirements" of CBOR.

11.2. Syntax
The schema for this type is defined by the claim-map rule in the following CDDL Definition:

; CDDL schema for a claim map in C2PA
claim-map = {
  "claim_generator": tstr, ; A User-Agent string formatted as per
http://tools.ietf.org/html/rfc7231#section-5.5.3, for including the name and version of the
claims generator that created the claim
  "claim_generator_info": [1* generator-info-map],
  "signature": jumbf-uri-type, ; JUMBF URI reference to the signature of this claim
  "assertions": [1* $hashed-uri-map],
  "dc:format": tstr, ; media type of the asset
  "instanceID": tstr .size (1..max-tstr-length), ; uniquely identifies a specific version of
an asset
  ? "dc:title": tstr .size (1..max-tstr-length), ; name of the asset,
  ? "redacted_assertions": [1* jumbf-uri-type], ; List of hashed URI references to the
assertions of ingredient manifests being redacted
  ? "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute all data hash assertions listed in this claim unless otherwise
overridden, taken from the C2PA data hash algorithm identifier registry. This provides the
value for the 'alg' field in data-hash and hashed-uri structures contained in this claim
  ? "alg_soft": tstr .size (1..max-tstr-length), ; A string identifying the algorithm used
to compute all soft binding assertions listed in this claim unless otherwise overridden,
taken from the C2PA soft binding algorithm identifier registry."
  ? "metadata": $assertion-metadata-map, ; additional information about the assertion
}

jumbf-uri-type = tstr .regexp "self#jumbf=[\\w\\d][\\w\\d\\.\/:-]+[\\w\\d]"

generator-info-map = {
  "name": tstr .size (1..max-tstr-length), ; A human readable string naming the
claim_generator   ? "Sec-CH-UA": [1* tstr], ; A human readable string naming the
claim_generator
  ? "version": tstr, ; A human readable string of the product's version 
  ? "icon": hashed-uri-map / $hashed-ext-uri-map, ; hashed URI to the icon (either embedded
or remote)
  * tstr => any
}

An example in CBOR-Diag is shown below:
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{
  "alg" : "sha256",
  "claim_generator": "Joe's Photo Editor/2.0 (Windows 10)",
    "claim_generator_info" : [
        {
            "name": "Joe's Photo Editor",
            "version": "2.0",
            "schema.org.SoftwareApplication.operatingSystem": "Windows 10"
        }
    ],
  "signature" : "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.signature",
  "dc:format": "image/jpeg",
  "assertions" : [
    {
      "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.assertions/c2pa.hash.data",
      "hash": b64'U9Gyz05tmpftkoEYP6XYNsMnUbnS/KcktAg2vv7n1n8='
    },
    {
      "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.assertions/c2pa.thumbnail.claim.jpeg",
      "hash": b64'G5hfJwYeWTlflxOhmfCO9xDAK52aKQ+YbKNhRZeq92c='
    },
    {
      "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.assertions/c2pa.claim.ingredient",
      "hash": b64'Yzag4o5jO4xPyfANVtw7ETlbFSWZNfeM78qbSi8Abkk='
    }
  ],
  "redacted_assertions" : [
    "self#jumbf=c2pa/urn:uuid:5E7B01FC-4932-4BAB-AB32-
D4F12A8AA322/c2pa.assertions/stds.exif"
  ]
}

The Media Type of the asset shall be declared in dc:format. If present, the value of dc:title shall be a human-
readable name for the asset.

If the asset contains XMP, then the asset’s xmpMM:InstanceID should be used as the instanceID. When no XMP
is available, then some other unique identifier for the asset shall be used as the value for instanceID.

NOTE
Some field names, such as dc:format, have namespace prefixes as their names and definitions are
taken directly from the XMP standard. However, their usage in C2PA does not require the use of XMP.

The signature field shall be present containing a URI reference to a claim signature.

The assertions field shall be present containing one or more URI references to the assertions being made by this
claim.

When present, the redacted_assertions field shall contain one or more URI references to redacted assertions.
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11.2.1. Claim Generator

The claim_generator field is required and its value is a string that conforms to the User-Agent string format
specified in section 5.5.3 of HTTP/1.1 Semantics and Content to inform a manifest consumer about what
software/hardware/system produced this Claim. Since the User-Agent string uses spaces to separate tokens, it is
recommended to use an _ (underscore, U+005F) to combine words inside a single token (e.g., "Joe’s Editor" →
"Joe’s_Editor").

11.2.2. Claim Generator Info

More detailed information about the claim generator shall be present as the value of claim_generator_info. For
compatibility with version 1.0 of this standard, both claim_generator and claim_generator_info are
required to be present.

A Manifest Consumer shall use the value of claim_generator_info in determining information about the claim
generator for itself or for presentation in a UX. If only a claim_generator field is present, or both
claim_generator and claim_generator_hints are present, the Manifest Consumer shall consider this a 1.0-
compliant claim. In that case, it shall use the value of claim_generator, as is, for presentation in a UX.

NOTE

In previous versions of this specification, there existed a claim_generator_hints object which
allowed using the specific fields from W3C’s proposed User Agent Client Hints specification.
However, the W3C chose to take that specification in a direction that is not aligned with C2PA and so
that structure is no longer written into claims.

11.2.2.1. Generator Info Map

When adding a claim_generator_info field, its value is an array of at least one generator-info-map object.
Each object shall contain at least the name field and may optionally contain a version field and an icon field,
though any other field is permitted, using the standard entity-specific labels' format described in Section 6.2,
“Labels”. The first entry of the array shall represent the hardware/software that actually created the claim (aka the
claim generator itself), while other entries may represent other hardware, software or libraries involved in the process
in decreasing order of significance.

A claim generator may desire to provide a graphical representation of itself, referred here as an icon, to a manifest
consumer that is presenting a user experience. The value of the icon object, if present, shall be a hashed URI.

NOTE
As with the assertions array, the hash algorithm used for a hashed URI is determined by the alg field
present in the hashed URI, or when absent, by a hash field in the claim.

Example using claim generator info

{
    "claim_generator": "Joe's_Photo_Editor/2.0 (Windows 10)",
    "claim_generator_info" : [
        {
            "name": "Joe's Photo Editor",
            "version": "2.0",
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            "schema.org.SoftwareApplication.operatingSystem": "Windows 10",
            "icon": {
                "url": "http://cdn.examplephotoagency.com/logo.svg",
                "hash": "5bdec8169b4e4484b79aba44cee5c6bd"
            }
        },
        {
            "name": "Some C2PA SDK",
            "version": "1.5",
            "com.litware.url" : "https://www.litware.com/SDK"
        }
    ]
}

11.3. Creating a Claim

11.3.1. Creating Assertions

Before the claim can be finalized, all assertions must be created and stored in a newly created C2PA Assertion Store as
described later in this document.

When creating a standard manifest, it may not be possible to know all of the required binding information at the time
of claim creation, in which case use the multiple step processing method to setup and then later fill-in the
information.

11.3.2. Preparing the Claim

11.3.2.1. Adding Assertions and Redactions

The claim shall contain the assertions field and its value is a list of all of the URI references for all assertions that
were added to the assertion store that are being "claimed" by this claim. At least one of the assertions shall be either a
data hash assertion, a general boxes hash assertion, or a BMFF-based hash assertion.

If any assertions in ingredient claims are being redacted, their URI references shall be added to list which is the value
of the redacted_assertions field.

11.3.2.2. Adding Ingredients

In many authoring scenarios, an actor does not create an entirely new asset but instead brings in other existing assets
on which to create their work - either as a derived asset, a composed asset or an asset rendition. These existing assets
are called ingredients and their use is documented in the provenance data through the use of an ingredient assertion.

When an ingredient contains one or more C2PA manifests, those manifests must be inserted into this asset’s manifest
store to ensure that the provenance data is kept intact. Such ingredient manifests are added to the JUMBF as
described in Section 12.1.1, “C2PA Box details”. If an ingredient’s manifest is remote, and the Claim Generator is
unable to retrieve the manifest, it should use an error code of manifest.inaccessible to reflect that.
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11.3.2.3. Connecting the Signature

The signature cannot be part of the signed payload, but since its label is pre-defined, then the full URI reference is also
known. As such, we can include that in the claim by setting the value of the signature field of the claim to that URI
reference.

NOTE This provides the explicit binding of the claim to its signature.

11.3.2.4. Signing a Claim

Producing the signature is specified in Section 14.2, “Digital Signatures”. The payload field of Sig_structure
shall be the serialized CBOR of the claim document, and shall use detached content mode. The serialized
COSE_Sign1_Tagged structure resulting from the digital signature procedure is written into the C2PA Claim
Signature box.

11.3.2.5. Time-stamps

If possible, the signer should use a RFC3161-compliant Time Stamp Authority (TSA) (RFC 3161 section 1) to obtain a
trusted time-stamp proving that the signature itself actually existed at a certain date and time and incorporate that
into the COSE_Sign1_Tagged structure as a countersignature. A manifest may contain multiple time-stamps.

NOTE
Signers are encouraged to obtain and include time-stamps to ensure their manifests will remain
valid. As described in Chapter 16, Validation, manifests without time-stamps cease to be valid when
the signing credential expires or becomes revoked.

All time-stamps shall be obtained as described in RFC3161 with the following additional requirements:

• The MessageImprint of the TimeStampReq structure (RFC 3161 section 2.4.1) shall be computed by creating
the ToBeSigned value in RFC 8152 section 4.4 with the following values for elements of Sig_structure:

◦ The context element shall be CounterSignature.

◦ The payload element shall be as described in Section 11.3.2.4, “Signing a Claim”.

◦ The remaining elements of Sig_structure are as described in Section 14.2, “Digital Signatures”.

• The ToBeSigned value is then hashed using a hash algorithm from the allowed list in Section 14.1, “Hashing”
that the TSA supports, and that hash algorithm and value are placed in the MessageImprint. If the TSA does
not support any hash algorithms from the allowed list, it cannot be used for time-stamping.

◦ Where possible, the hash algorithm should use the same hash algorithm used in the digital signature of the
claim.

• The certReq boolean of the TimeStampReq structure shall be asserted in the request to the TSA, to ensure its
certificate chain is provided in the response.

Time-stamps shall be stored in a COSE unprotected header whose label is the string sigTst. If no time-stamps are
included, the header shall be absent. When present, the value of this header shall be a tstContainer defined by
the following CDDL:
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; CBOR version of tstContainer and related structures based on JSON schema at
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/19182-jsonSchema.json
tstContainer = {
  "tstTokens": [1* tstToken]
}

tstToken = {
  "val": bstr
}

The content of the TimeStampResp structure received in reply from the TSA shall be stored as the value of the val
property of an element of tstTokens.

NOTE
The above definition is a CBOR adaptation of a subset of the schema from JAdES section 5.3.4 and its
JSON schema, except with the modification that the content of val is a byte string containing the
content of the TimeStampResp, and not a Base64-encoded version of the same.

11.3.2.6. Credential Revocation Information

If the signer’s credential type supports querying its online credential status, and the credential contains a pointer to a
service to provide time-stamped credential status information, the signer should query the service, capture the
response, and store it in the manner described for the signer’s credential type in the Trust Model. If credential
revocation information is attached in this manner, a trusted time-stamp must also be obtained after signing, as
described in Section 11.3.2.5, “Time-stamps”.

11.3.3. Examples of Claims

11.3.3.1. Single Claim

Here is a visual representation of an image containing a single claim with multiple assertions that have been
embedded inside it.
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Figure 7. A single claim with assertions

11.3.3.2. Multiple Claims

In this example of creating a second claim for the previous example, one of the original assertions has been redacted
from the previous claim. The visual representation for this scenario would look like:
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Figure 8. Redacting assertions in a secondary claim

11.4. Multiple Step Processing
Some asset file formats require file offsets of the C2PA Manifest Store and asset content to be fixed before the
manifest is signed, so that content bindings will correctly align with the content they authenticate. Unfortunately, the
size of a manifest and its signature cannot be precisely known until after signing, which could cause file offsets to
change. For example, in JPEG-1 files, the entire C2PA Manifest Store must appear in the file before the image data,
and so its size will affect the file offsets of content being authenticated.

To accomplish this, a multiple step approach is taken, similar to how signatures in PDF are done.

11.4.1. Prepare the XMP

For those C2PA-enabled assets that contain embedded XMP, start by creating the XMP data stream and then
serializing it into the asset in the standard location reserved for it in the format of the asset. The XMP stream may
include the active manifest reference.

NOTE While it is possible to add the XMP data to the list of exclusions in a data hash assertion, doing so is
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not recommended as it would remove tamper detection of that asset metadata.

11.4.2. Create content bindings

When creating a standard manifest, its claim shall include one or more content binding assertions in its list of
assertions to ensure that the asset is tamper-evident.

Create the data hash assertion and add it to the assertion store taking into account the following considerations.

In many cases, such as with JPEG-1, it is not possible to hash the asset in its entirety because the manifest will be
embedded in the middle of the file, so the size or location manifest data will not be known at the time the asset hash
is calculated. This circular dependency is avoided by allowing exclusion ranges to be specified during hashing. When
exclusion ranges are specified, a single hash is performed, but only over the asset ranges that are not in any of the
exclusions.

If a manifest is embedded in the center of a JPEG-1 file in an APP11 segment, then the claim creator may exclude the
APP11 segment(s) from the hash calculation.

In order to prevent insertion attacks, it is desirable to have only a single exclusion range when possible. When the size
or location (or both) of the manifest in the asset is not known, then the start and length values in the data hash
assertion shall both be zero and the size of the pad value should be large enough to accommodate writing in the
values in the second pass. At least 16 bytes is recommended. The value of the pad key shall consist of all 0x00’s.

11.4.3. Create a temporary Claim and Signature

Add the newly created data hash assertion reference to the claim’s assertion list providing a temporary hash value,
such as empty spaces.

At this point, the temporary claim is complete and can be added to the C2PA Manifest being created.

Since the claim is only temporary at this time, it is not possible to sign it. To ensure the claim signature box contains a
valid CBOR structure, create a temporary COSE_Sign1_Tagged structure as described in RFC 8152 section 4.2. The
COSE_Sign1_Tagged is a tag byte followed by a COSE_Sign1 structure, which is a four-element CBOR array.
Construct the array as follows:

• The first element is the protected header bucket (RFC 8152 section 3). Create an empty bucket by placing a
bstr of size 0 in this position.

• The second element is the unprotected header bucket, which is a CBOR map. Create a map of 1 pair. Use the
string pad as the label, and place a bstr of the desired padding size filled with zero bytes (0x00) as the value. A
25 kilobyte size is recommended for the initial size of this padding.

• The third element is the payload. Place the value nil (CBOR major type 7, value 22) here.

• The fourth element is signature. Place a bstr of size 0 here.
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11.4.4. Complete the C2PA Manifest

At this point all of the boxes that comprise the entire C2PA Manifest for the asset are completed and can be (if not
already) constructed into its final form. The asset’s C2PA Manifest, along with the manifests of any ingredients, are
combined together to form the complete C2PA Manifest Store. The active manifest must be the last C2PA Manifest
superbox in the C2PA Manifest Store superbox. The C2PA Manifest Store can then be embedded into the asset as
discussed in Section 12.3, “Embedding manifests into assets”.

11.4.5. Going back and filling in

Now that the C2PA Manifest Store has been embedded into the asset, the starting offset and the length of the active
manifest can be updated in its data hash assertion. It is necessary that when doing so, you do not change the size of
the assertion’s box, only its data. This is done by adjusting the value of the pad field to be the necessary length to "fill
up" the remaining bytes.

NOTE

Preferred/deterministic CBOR serialization of pad uses a variable length integer to specify the length
of the encoded binary data. When the length goes from zero to 1 byte, or 1 to 2 bytes (etc.), the length
of the resulting pad jumps by two bytes. This means that not all paddings can be expressed using a
single padding field. For example, 24-byte and 26-byte pads can be created, but a 25-byte pad
cannot. If this situation arises, the desired padding can be split between pad and pad2. For
example, to make a 25-byte pad, a claim generator can encode 19 bytes into pad (resulting in an
encoded length of 20 bytes), and 4 bytes into pad2 (resulting in 5 bytes.)

Once the data hash assertion has been updated, it can be hashed and the hash written over the empty spaces that
were used previously to hold the location.

The claim is now complete, and it can be hashed and signed as described in Section 11.3.2.4, “Signing a Claim”, with
the resultant signature filling the pre-allocated space. The pad header can then be shrunk as required so that the
claim signature box remains the same size; because this header is unprotected, changing it does not invalidate the
claim signature.

If the serialized COSE_Sign1_Tagged structure exceeds the reserved size of the C2PA Claim Signature box, multiple
step processing must be repeated with a larger padding size chosen in Section 11.4.3, “Create a temporary Claim and
Signature”. Revocation information retrieved during the previous attempt should be reusable if it is still within its
validity interval (RFC 6960 section 4.2.2.1), but a new time-stamp will be required on the new claim with the file offsets
changed as the result of added padding.
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Chapter 12. Manifests

12.1. Use of JUMBF
In order to support many of the requirements of C2PA, C2PA Manifests needed to be stored (serialized) into a
structured binary data store that enables some specific functionality including:

• Ability to store multiple manifests (e.g., parents and ingredients) in a single container

• Ability to refer to individual elements (both within and across manifests) via URIs

• Ability to clearly identify the parts of an element to be hashed

• Ability to store pre-defined data types used by C2PA (e.g., JSON and CBOR)

• Ability to store arbitrary data formats (e.g., XML, JPEG, etc.)

In addition to supporting all of the requirements above, our chosen container format - JUMBF, ISO 19566-5 - is also
natively supported by the JPEG family of formats and is compatible with the box-based model (i.e., ISOBMFF, ISO
14496-12) used by many common image and video file formats. Using JUMBF enables all the same benefits (and a few
extras, such as URI References) while being able to work with classic image formats, such as JPEG/JFIF and PNG as
well as 3D and document (e.g., PDF) formats. This serialized format shall be used also in formats that do not natively
support JUMBF, or when C2PA Manifest Stores are stored separately from the asset, such as in a separate file or URI
location.

NOTE

Since most of the standard assertions, as well the claim signature, are serialized as CBOR, using
CBOR for the entire C2PA Manifest was considered but not chosen because CBOR is not a container
format. It could be used as one through having to re-define how CBOR would be used to provide the
features natively supported by JUMBF.

For example, to store a "blob of JSON" inside of CBOR, and know that it is JSON (and not some other
format) would require designing a data structure for storing such things. Then the parent structure
would need to be defined as to how to carry that structure. This same concept would also have to be
done for each of the native features of JUMBF.

While it would certainly be possible to re-implement all of the required functionality entirely in
CBOR, it would be a lot of work and would not fully remove the need for a JUMBF/BMFF parser in all
implementations.

A C2PA Manifest Consumer shall never process an assertion, assertion store, claim, claim signature or C2PA Manifest
that is not contained inside of a C2PA Manifest Store. Additionally, when a C2PA Manifest Consumer encounters a
JUMBF box or superbox whose UUID it does not recognize, it shall skip over (and ignore) its contents.

NOTE
This means that the C2PA Manifest Consumer can process private boxes that it knows about, but
ignore ones of which it is unaware.
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12.1.1. C2PA Box details

12.1.1.1. JUMBF Description boxes

12.1.1.1.1. Labels

As described in the JUMBF specification (ISO 19566-5, A.3), a label shall be stored as ISO/IEC 10646 characters in the
UTF-8 encoding. Characters in the ranges U+0000 to U+001F inclusive and U+007F to U+009F inclusive, as well as the
specific characters '/', ';', '?', and '#', are not permitted in the label. The label shall be null-terminated.

As labels used as part of JUMBF URIs, the characters U+FEFF, U+FFFF, and U+D800-U+DFFF shall also not be used.

12.1.1.1.2. Toggles

All JUMBF Description boxes (ISO 19566-5, A.3) used in a C2PA Manifest require a label, the Label Present toggle
(xxxxxx1x) shall be set. In addition, because JUMBF URIs are used to refer to boxes throughout the system (e.g.,
listing assertions, references to ingredients, etc.), the Requestable toggle (xxxxxx11) shall be set.

When including a salt in a PRIVATE box as described in Section 8.3.1.3, “Hashing JUMBF Boxes”, the Private toggle
(xxx1xxxx) shall also be set.

12.1.1.2. Manifest Store

C2PA data is serialized into a JUMBF-compatible box structure, and the outermost box is referred to as the C2PA
Manifest Store. An example C2PA Manifest Store, with a single C2PA Manifest, might look like this:
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M a n i f e s t  S t o r e  -  J U M B F  ( ` c 2 p a ` )

M a n i f e s t  ( ` c 2 m a `  :  ` u r n : u u i d ` )

C l a i m  S i g n a t u r e  ( ` c 2 c s `  :  ` c 2 p a . s i g n a t u r e ` )

Claim (`c2cl` :  `c2pa.claim`)

A s s e r t i o n  S t o r e  ( ` c 2 a s `  :  ` c 2 p a . a s s e r t i o n s ` )

s t d s . s c h e m a - o r g . C r e a t i v e W o r k

c 2 p a . t h u m b n a i l . c l a i m . p n g

c 2 p a . a c t i o n s

c 2 p a . h a s h . d a t a

COSE Digital Signature

C B O R

JSON-LD

Embedded File

C B O R

C B O R

Figure 9. C2PA Manifest Store

The C2PA Manifest Store is a JUMBF superbox composed of a series of other JUMBF boxes and superboxes, each
identified by their own UUID and label in their JUMBF Description box. The C2PA Manifest Store shall have a label of
c2pa, a UUID of 0x63327061-0011-0010-8000-00AA00389B71 (c2pa) and shall contain one or more C2PA
manifest superboxes, also known as C2PA Manifests. The C2PA Manifest Store may also contain JUMBF boxes and
superboxes whose UUIDs are not defined in this specification.

NOTE
Allowing other boxes and superboxes enables custom extensions to C2PA as well as enabling the
addition of new boxes in future versions of this specification without breaking compatibility.

Each C2PA Manifest shall contain the data created at the time a claim is issued including the C2PA Assertion Store, a
C2PA Claim, and a C2PA Claim Signature. It may also contain a C2PA Credential Store. A C2PA Manifest may also
contain JUMBF boxes and superboxes whose UUIDs are not defined in this specification.

The UUID for each C2PA Manifest shall be either 0x63326D61-0011-0010-8000-00AA00389B71 (c2ma) or
0x6332756D-0011-0010-8000-00AA00389B71 (c2um) depending on the type of manifest. In order to enable
uniquely identifying each C2PA Manifest, they shall be labelled with a RFC 4122, UUID optionally proceeded by an
identifier of the claim generator and a :. An example label for the fictitious ACME claim generator might look like
acme:urn:uuid:F9168C5E-CEB2-4FAA-B6BF-329BF39FA1E4.

12.1.1.3. Assertion Store

The C2PA Assertion Store is a superbox that shall have a label of c2pa.assertions and a UUID of 0x63326173-
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0011-0010-8000-00AA00389B71 (c2as). It shall contain one or more JUMBF superboxes (called C2PA Assertion
boxes) whose JUMBF type defines the BMFF type of the sub-boxes that contain the assertion data (see ISO 19566-5,
Annex B, Table B.1 and ISO 19566-5/AMD-1, Annex B). These superboxes shall each have a label as defined in Standard
Assertions.

The JUMBF Content Type (ISO 19566-5, Annex B) box(es) contained in each assertion superbox should be CBOR
Content Type (cbor), JSON Content Type (json), Embedded File Content Type (bfdb & bidb) or UUID Content Type
(uuid) though any Content Type defined in JUMBF and its amendments is permitted. In addition, a JUMBF Protection
Box as described in ISO 19566-4 may also be used.

The C2PA Assertion Store shall not contain any JUMBF boxes or superboxes that are not JUMBF Content Boxes.

NOTE
Custom assertions containing other formats/serializations of data, such as encrypted data, are
supported through the use of a UUID Content Box containing the custom UUID followed by the data
(see ISO 19566-5, B.5).

12.1.1.4. Claim and Claim Signature

The C2PA Claim box shall have a label of c2pa.claim, a UUID of 0x6332636C-0011-0010-8000-
00AA00389B71 (c2cl) and shall consist of a single CBOR Content Type box (cbor).

The C2PA Claim Signature box shall have a label of c2pa.signature, a UUID of 0x63326373-0011-0010-
8000-00AA00389B71 (c2cs) and shall consist of a single CBOR Content Type box (cbor).

12.1.1.5. Ingredient Storage

When a C2PA Manifest includes ingredient assertions, and an ingredient contains a C2PA Manifest, that C2PA Manifest
shall be included to ensure that the provenance data is kept intact. Such ingredient manifests are added to the C2PA
Manifest Store as a peer of the C2PA Manifest for the asset itself.
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M a n i f e s t  S t o r e  -  J U M B F  ( ` c 2 p a ` )

I n g r e d i e n t  M a n i f e s t  ( ` u r n : u u i d : A B C D ` )

A c t i v e  M a n i f e s t  ( ` u r n : u u i d : W X Y Z ` )

C l a i m  S i g n a t u r e  ( ` c 2 c s `  :  ` c 2 p a . s i g n a t u r e ` )

Claim (`c2cl` :  `c2pa.claim`)

A s s e r t i o n  S t o r e  ( ` c 2 a s `  :  ` c 2 p a . a s s e r t i o n s ` )

s t d s . s c h e m a - o r g . C r e a t i v e W o r k

c 2 p a . t h u m b n a i l . c l a i m . p n g

c 2 p a . a c t i o n s

c 2 p a . h a s h . d a t a

Claim Signature

Claim

Assertion Store

COSE Digital Signature

C B O R

JSON-LD

Embedded File

C B O R

C B O R

Figure 10. C2PA Manifest Store With an Ingredient

12.1.1.6. Credential Storage

A C2PA Credential Store (VCStore) is a JUMBF superbox that shall contain only one or more JSON Content Type boxes
(json). It shall not contain any other type of JUMBF box or superbox. It shall have a label of c2pa.credentials
and a UUID of 0x63327663-0011-0010-8000-00AA00389B71 (c2vc).

When storing W3C Verifiable Credentials in a VCStore, each one shall be labelled with the value of the id field of the
credentialSubject of the VC itself. Since the id is guaranteed to be unique, this ensures that the URI to that
credential will be unique.
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M a n i f e s t  S t o r e  -  J U M B F  ( ` c 2 p a ` )

M a n i f e s t  ( ` c 2 m a `  :  ` u r n : u u i d ` )

C l a i m  S i g n a t u r e  ( ` c 2 c s `  :  ` c 2 p a . s i g n a t u r e ` )

Claim (`c2cl` :  `c2pa.claim`)

A s s e r t i o n  S t o r e  ( ` c 2 a s `  :  ` c 2 p a . a s s e r t i o n s ` )

s t d s . s c h e m a - o r g . C r e a t i v e W o r k

c 2 p a . t h u m b n a i l . c l a i m . p n g

c 2 p a . a c t i o n s

c 2 p a . h a s h . d a t a

C r e d e n t i a l  S t o r e  ( ` c 2 v c `  :  ` c 2 p a . c r e d e n t i a l s ` )
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C B O R

JSON-LD

Embedded File

C B O R

C B O R

JSON-LD

Figure 11. C2PA Manifest Store with W3C Verifiable Credentials

12.1.1.7. Data Storage

A C2PA Data Box Store is a JUMBF superbox that shall contain only one or more CBOR Content Type boxes (cbor). It
shall not contain any other type of JUMBF box or superbox. It shall have a label of c2pa.databoxes and a UUID of
0x63327663-0011-0010-8000-00AA00389B71 (c2db).

The CBOR Content Type boxes shall have a label of c2pa.data (for embedded data).
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M a n i f e s t  S t o r e  -  J U M B F  ( ` c 2 p a ` )

M a n i f e s t  ( ` c 2 m a `  :  ` u r n : u u i d ` )

C l a i m  S i g n a t u r e  ( ` c 2 c s `  :  ` c 2 p a . s i g n a t u r e ` )

Claim (`c2cl` :  `c2pa.claim`)

A s s e r t i o n  S t o r e  ( ` c 2 a s `  :  ` c 2 p a . a s s e r t i o n s ` )
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c 2 p a . a c t i o n s

c 2 p a . h a s h . d a t a

D a t a  B o x  S t o r e  ( ` c 2 d b `  :  ` c 2 p a . d a t a b o x e s ` )

c 2 p a . d a t a _ 1
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C B O R

Figure 12. C2PA Manifest Store with Data Boxes

12.2. Types of Manifests

12.2.1. Commonalities

All C2PA Manifests shall contain an assertion store with at least one assertion, a claim and a claim signature. It may
also contain a credential store.

12.2.2. Standard Manifests

A standard C2PA Manifest (UUID: 0x63326D61-0011-0010-8000-00AA00389B71 (c2ma)) shall contain exactly
one hard binding to content assertion - either a c2pa.hash.data, c2pa.hash.boxes, c2pa.hash.bmff
(deprecated), or c2pa.hash.bmff.v2 based on the type of asset and version for which the manifest is destined.
Because of this requirement, they are the predominant type of manifest that will be present in C2PA provenance data.
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12.2.3. Update Manifests

There are, however, provenance workflows where additional assertions need to be added but the digital content is
not changed. In these workflows, an Update Manifest (UUID: 0x6332756D-0011-0010-8000-00AA00389B71
(c2um)) can be used.

An Update Manifest shall not contain assertions of types c2pa.hash.data, c2pa.hash.boxes,
c2pa.hash.boxes, c2pa.hash.bmff, or c2pa.hash.bmff.v2 because the content has not changed and
therefore the bindings need not be updated. If the hashes cover other types of potentially updatable information,
such as XMP or IPTC metadata areas in the format, they too cannot be modified. In the case of a file offset hash
(c2pa.hash.data), the C2PA Manifest Store has to continue to start at the same file offset after updating - only its
length can change.

The Update Manifest shall not contain an assertion of type c2pa.actions or c2pa.actions.v2 because that
assertion is defined to describe "changes to the digital content". It shall not contain a Thumbnail assertion as that
would imply changes to the content as well.

The Update Manifest shall contain exactly one c2pa.ingredient assertion that (a) includes a c2pa_manifest
field with a value that is the URI reference to that C2PA Manifest that is being updated and (b) has the value of
parentOf for the relationship field.

NOTE
The ingredient’s C2PA Manifest (referenced via the c2pa_manifest field) can be either a standard
manifest or an update manifest.

12.3. Embedding manifests into assets

12.3.1. Embedding manifests into non-BMFF-based assets

A C2PA Manifest is embedded into an asset as part of the C2PA Manifest Store for that asset.

When embedding the C2PA Manifest Store into an asset, the location will vary based on the type of the asset. Here are
some well-known types and the location to use:

JPEG

Refer to Section 12.3.1.1, “Embedding manifests into JPEG” for more information.

PNG

Refer to Section 12.3.1.2, “Embedding manifests into PNG” for more information.

SVG

Refer to Section 12.3.1.3, “Embedding manifests into SVG” for more information.

PDF

Refer to Section 12.3.1.4, “Embedding manifests into PDFs” for more information.
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FLAC

Refer to Section 12.3.1.5, “Embedding manifests into ID3” for more information.

MP3

Refer to Section 12.3.1.5, “Embedding manifests into ID3” for more information.

NOTE

EDITORS NOTE

C2PA is asking for feedback from the audio community if embedding the C2PA Manifest Store in
an ID3v2 container will work with FLAC or if we will need to use the native FLAC container.

GIF

Refer to Section 12.3.1.8, “Embedding manifests into GIFs” for more information.

DNG

Refer to Section 12.3.1.6, “Embedding manifests into TIFF-based assets” for more information.

TIFF-based formats

Refer to Section 12.3.1.6, “Embedding manifests into TIFF-based assets” for more information.

WAV & BWF

Refer to Section 12.3.1.7, “Embedding manifests into RIFF-based assets” for more information.

AVI

Refer to Section 12.3.1.7, “Embedding manifests into RIFF-based assets” for more information.

WebP

Refer to Section 12.3.1.7, “Embedding manifests into RIFF-based assets” for more information.

RIFF-based formats

Refer to Section 12.3.1.7, “Embedding manifests into RIFF-based assets” for more information.

BMFF-based formats

The box specified in Section 12.3.2, “Embedding manifests into BMFF-based assets”.

NOTE
A C2PA Manifest Store can be embedded in BMFF-based downloadable audio files using codecs
such as the Advanced Audio Codec (AAC) or the Apple Lossless Audio Codec (ALAC).

Additional locations for other file formats will be added in the future.

NOTE
Non-BMFF-based audio formats which are being considered for addition to this specification include
Ogg Vorbis and the native container version of the Free Lossless Audio Codec (Native FLAC).

NOTE
Many classic image formats such as BMP do not support the embedding of arbitrary data, so that the
use of an external manifest is required.
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12.3.1.1. Embedding manifests into JPEG

The C2PA Manifest Store shall be embedded as the data contained in an APP11 Marker as defined in JPEG XT, ISO/IEC
18477-3.

Since a single marker segment in JPEG 1 cannot be larger than 64K bytes, it is likely that multiple APP11 segments will
be required, and they shall be constructed as per the JPEG 1 standard and ISO 19566-5, D.2. When writing multiple
segments, they shall be written in sequential order, and they shall be contiguous (i.e., one segment immediately
following the next).

12.3.1.2. Embedding manifests into PNG

The C2PA Manifest Store shall be embedded using an ancillary, private, not safe to copy, chunk type of 'caBX' (as
per PNG, 4.7.2). It is recommended that the 'caBX' chuck precede the 'IDAT' chunks.

NOTE
Although PNG supports it, it’s considered bad-form to have a data block after the 'IDAT' and
before the 'IEND'. (The exception being animated PNG blocks)

12.3.1.3. Embedding manifests into SVG

SVG is an XML-based format that can exist either stand-alone or embedded into other text-based formats such as
HTML. As such, it is necessary to Base64 encode the binary C2PA Manifest Store to perform the embedding. While this
section describes how to do that, the use of an external manifest is preferred.

The C2PA Manifest Store shall be embedded as the Base64-encoded value of a c2pa:manifest element in the
metadata element of the SVG.

An example might look like this (with the actual C2PA Manifest’s data left out)

<?xml version="1.0" standalone="yes"?>
<svg width="4in" height="3in" version="1.1"
    xmlns = 'http://www.w3.org/2000/svg'>
    <metadata>
        <c2pa:manifest>...Base64 data goes here...</c2pa:manifest>
    </metadata>
</svg>

12.3.1.4. Embedding manifests into PDFs

In most other formats, there only exists a single C2PA Manifest Store that contains all of the C2PA Manifests for the
asset. However, because of PDFs "incremental update" feature, it is necessary to instead support multiple manifests
in a single PDF. In this scenario, the C2PA Manifest Store found in the base PDF shall be considered the origin and the
one in the most recent update, the active manifest. A C2PA Manifest Consumer shall process all C2PA Manifests in all
C2PA Manifest Stores as if they were contained in a single C2PA Manifest Store.

NOTE
Because a JUMBF URI is always a full URI, meaning that it starts at a given C2PA Manifest, and all
C2PA Manifests are considered to be contained in a single C2PA Manifest Store, using such a URI to
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refer to a parentOf ingredient across C2PA Manifest Stores in a PDF is acceptable.

A C2PA Manifest Store shall be embedded using an embedded file specification (ISO 32000, 7.11.4). The file
specification dictionary shall have an AFRelationship key (ISO 32000, 7.11.3) whose value is C2PA_Manifest. If
a C2PA Manifest Store is embedded into an encrypted PDF, the embedded file stream shall use an Identity crypt
filter.

The embedded file specification shall be the value (via indirect object) of the AF key in the document catalog
dictionary. It shall also be referenced (via indirect object) either from the EmbeddedFiles NameTree
(/Catalog/Names/EmbeddedFiles) or from a FileAttachment annotation. The annotation approach shall
be used when adding a C2PA Manifest Store to a PDF that already has an existing PDF certifying signature in order to
avoid invalidating its DocMDP restrictions.

NOTE
The value of the P field in the DocMDP dictionary needs to be 3 in order to add another C2PA
Manifest. Values of 1 or 2 do not allow that type of modification.

It is necessary to know, when adding a new C2PA Manifest Store, if a PDF signature (certifying or approval) will also be
applied. Since the PDF signature will change the data of the PDF after the C2PA Manifest is signed, the size and
location of the PDF signature dictionary’s Contents key must be determined before C2PA signing. That range of
bytes shall be added to the list of exclusions in the c2pa.hash.data assertion, so that the C2PA signature is not
invalidated by the addition of the PDF signature. The PDF signature shall be over the entire PDF, including the
associated C2PA Manifest Store.

NOTE
Adding the PDF signature in addition to the C2PA’s claim signature improves compatibility with the
existing PDF ecosystem.

12.3.1.5. Embedding manifests into ID3

The C2PA Manifest Store shall be embedded into a ID3v2-compatible, compressed audio file (e.g., MP3 or FLAC) file as
the Encapsulated object data of a General Encapsulated Object (GEOB) as defined in https://id3.org/id3v2.3.0#
General_encapsulated_object. The GEOB’s MIME type field shall be present and shall use the value for the media
type for JUMBF as described in Section 12.4, “External Manifests”.

12.3.1.6. Embedding manifests into TIFF-based assets

The Digital Negative or DNG format provides camera manufacturers to provide their camera raw formats in a
standardized manner. DNG is based on which is based on TIFF/EP (which is, itself, based on TIFF).

The C2PA Manifest Store shall be embedded into a TIFF-compatible file (i.e., TIFF/EP, DNG or other TIFF-based RAW
formats) as the data of a tag with ID 52545 (decimal) or 0xCD41 (hexadecimal), with a tag type of 7.

Although TIFF supports the concept of multiple pages or layers (via multiple IFD’s), there shall only be one C2PA
Manifest Store for the entire asset - not one per IFD. As such, the C2PA Manifest Store shall be part of IFD 0.
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12.3.1.7. Embedding manifests into RIFF-based assets

The RIFF (Resource Interchange File Format) format provides a generic container format for storing data in tagged
chunks. It is primarily used to store multimedia such as images, sound and video. It serves as the container format for
WAV, BWF, Broadcast Wave, AVI and WebP.

NOTE RIFF is based on an older format called IFF.

The C2PA Manifest Store shall be embedded into a RIFF-compatible file (i.e., WAV, AVI or WebP) as the data of a chunk
with an identifier of C2PA.

For WebP, the C2PA chunk shall appear at the end of the RIFF chunk because of its strict chunk order. When working
with other RIFF-based formats, such as WAV, BWF and AVI files, it is recommended to put the C2PA chunk early in the
RIFF chunk when possible.

12.3.1.8. Embedding manifests into GIFs

The C2PA Manifest Store shall be broken into chunks of a size no greater than 255 bytes and embedded into
contiguous data sub-blocks (as per GIF, 15) within a C2PA-specialised Application Extension block (as per GIF, 26),
specified below.

NOTE
In this C2PA Application Extension Block, the Application Authentication Code is not used to
authenticate the application producing the block. Instead, it is used as a block version, and set
initially at major version 1, minor version 0, and is encoded as specified below.

Extension Introducer: 0x21
Application Extension Label: 0xFF
Block Size: 0xB
Application Identifier: 0x43, 0x32, 0x50, 0x41, 0x5F, 0x47, 0x49, 0x46 (“C2PA_GIF”)
Application Authentication Code: 0x010000 (0x[MajorVersion][MinorVersion]00)
Application Data: The C2PA Manifest Store, encoded as a series of data sub-blocks, each
containing 1 byte size followed by up to 255 bytes of data
Block Terminator: 0x00 (added after the last data sub-block of the C2PA Manifest Store)
Quantity: One

This block shall be embedded after the header and prior to the first image descriptor box.

12.3.2. Embedding manifests into BMFF-based assets

12.3.2.1. The 'uuid' Box for C2PA

All BMFF-based C2PA assets, whether they are timed (e.g., videos with or without audio tracks), untimed (e.g., still
photos) or mixed (e.g., live or animated photos) audiovisual media, shall use a 'uuid' box that adheres to the
following syntax and semantics defined below.

NOTE
EDITORS NOTE

The reason that a 'uuid' box instead of a 'c2pa' box is being used is that browsers based on
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Chromium will immediately fail playback when they encounter any unknown top-level boxes.

Some file formats that are BMFF-based and would be supported via this method include:

• MPEG-4 code-points, either complete (.mp4) or fragmented (.m4s); downloadable audio files (.m4a)

• HEIF (.heif, .heic)

• AVIF (.avif)

12.3.2.1.1. Definition

Box Type: `'uuid'`
Extended Box Type: 0xD8, 0xFE, 0xC3, 0xD6, 0x1B, 0x0E, 0x48, 0x3C, 0x92, 0x97, 0x58, 0x28,
0x87, 0x7E, 0xC4, 0x81
Container: File
Mandatory: No
Quantity: Zero or more

The Coalition for Content Provenance and Authenticity ('uuid' with aforementioned uuid) box embeds provenance
into BMFF. One such box contains a C2PA Manifest Store, and there may be one or more auxiliary boxes containing
additional information required for validation.

12.3.2.1.2. Syntax

aligned(8) class ContentProvenanceBox extends FullBox(`'uuid'`, extended_type = 0xD8 0xFE
0xC3 0xD6 0x1B 0x0E 0x48 0x3C 0x92 0x97 0x58 0x28 0x87 0x7E 0xC4 0x81, version = 0, 0) {
    string box_purpose;
    bit(8) data[];
}

12.3.2.1.3. Semantics

box_purpose [indicates purpose of box]

data [depends on box_purpose]

The box_purpose and fields that depend on it are described below for each box purpose.

NOTE

Regarding unique ids:

There are cases, such as fragmented MP4 (fMP4), where the id for a subset of the asset, such as the
track_id field of the 'tkhd' box, is only locally unique to a subset of the overall asset rather than
globally unique to the asset.

Because a globally unique id is required to determine what to hash, a unique id is included. This
unique id does not equal any value from the original asset; each value is instead defined when the
manifest is created. The unique id is then combined with an associated local id to form an id that’s
globally unique to the entire asset.
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12.3.2.2. Box Containing the Manifest

The box containing the C2PA Manifest Store shall appear before the first 'mdat' box in the file and before any
'moov' box in the file. To accommodate major_brand and compatible_brand verification, it shall be placed after the
'ftyp' box.

The fields in the corresponding box described above shall be set as follows.

box_purpose For a C2PA Manifest Store, this value shall be manifest.

data When box_purpose is manifest, the first 8 bytes inside
'data' shall be the absolute file byte offset to the first
auxiliary 'uuid' C2PA box with box_purpose equal to
merkle. If this file contains no such boxes, those 8 bytes
shall be zero. Those 8 bytes shall be followed by the raw
C2PA Manifest Store bytes followed by zero or more
unused padding bytes.

NOTE
The 'data' field inside the 'uuid' box of type manifest includes the absolute file byte offset,
manifest, and padding bytes. Padding bytes are NOT permitted OUTSIDE the 'uuid' box unless
they are contained in their own mp4 box such as a 'free' box.

For fragmented MP4 (fMP4) files, an identical 'uuid' C2PA box of type manifest shall be present in each
initialization segment; the C2PA Manifest Store shall be identical.

12.3.2.3. Auxiliary 'c2pa' Boxes for Large and Fragmented Files

Some files have one or more very large 'mdat' boxes (e.g., large video or image files which may be downloaded and
rendered progressively) or large numbers of independent 'mdat' boxes (e.g., fMP4 where each fragment can be
downloaded independently).

In these cases, it is unreasonable to require a client to completely download all 'mdat' box(es) before validating any
portion of the asset. Avoiding that necessity is resolved by using multiple hashes.

For each large 'mdat' box, subsets of the box have individual hashes that can be validated independently; how to
determine these subsets is specified below. For fMP4 content where each 'mdat' box can be downloaded
independently, each fragment has its own individual hash.

In the simplest case, all of these hashes are stored in the active manifest. Each subset has an auxiliary 'uuid' C2PA
box that declares how to locate its hash in the active manifest; refer to the note regarding unique ids above for why
this is the case.

However, for sufficiently large assets, including every subset’s hash in the manifest itself would increase the size of
the C2PA Manifest Store to one or more megabytes.

Avoiding such a large C2PA Manifest Store for a large asset is achieved by using one or more Merkle trees.
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• For a large non-fragmented asset that contains one or more 'mdat' boxes in a single large file, one Merkle tree is
used for each 'mdat' box.

• For a large fragmented asset that contains a set of 'mdat' boxes for a single track which may be spread across
multiple files, one Merkle tree is used for each track.

In either case:

• Each leaf node of any given Merkle tree is the subset’s hash.

• The manifest stores one row of each Merkle tree.

• The auxiliary 'uuid' C2PA box that exists for each subset indicates which Merkle tree row in the active manifest
it requires and which leaf node it represents. It also includes any additional hash(es) from the Merkle tree
necessary to derive a hash in the active manifest’s Merkle tree row.

The selection of which Merkle tree row to store in the manifest creates a size tradeoff within the asset. Specifically,
storing a single hash per Merkle tree in the manifest minimizes the size of the manifest but requires log2(subsets) to
be stored in each subset-specific box. Each time the number of hashes stored in the manifest for a Merkle tree is
doubled (by moving "down" one Merkle tree row), the number of hashes stored in each subset-specific box decreases
by one. Thus, increasing the size of the manifest decreases the size of the entire asset and vice-versa, and since hashes
for individual subsets are replicated across subsets as required to derive a manifest-specified hash, the tradeoff is not
1 to 1.

Making this size tradeoff is left up to the implementation creating the manifest; this spec neither mandates nor
recommends that any specific Merkle tree row be stored in the manifest. That said, because the simplest case of
storing all subset hashes in the manifest is equivalent to using a Merkle tree where the leaf nodes are stored in the
manifest, the same Merkle tree construction is used for multiple hashes in all cases. That construction is defined as
follows.

The portion of the manifest containing the BMFF Hash shall include the merkle field. Refer to Section 10.2.2,
“Hashing a BMFF-formatted asset” for more information.

For large 'mdat' boxes that can be validated piecemeal, two or more auxiliary 'uuid' C2PA boxes with
box_purpose set to 'merkle' as described below shall be included in the single asset file. They shall follow the last
'mdat' box in the file.

For timed-media where an 'stco' or 'co64' box is present, the hash used for a given leaf node in the Merkle tree
shall be computed over an individual subset of samples as defined by that box.

For untimed-media where an 'iloc' box is present (such as HEIF or AVIF), the hash used for a given leaf node in the
Merkle tree shall be computed over an individual item as defined by that box.

Regardless of the subset-defining mechanism, all such auxiliary 'uuid' C2PA boxes shall meet the following
requirements.

• They shall be in the same sequence as the subsets they hash as specified by the 'stco', 'co64', or 'iloc'
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box regardless of their location in the 'mdat'.

• They shall be grouped such that a single Merkle tree’s auxiliary 'uuid' C2PA boxes are sequential with no
intervening boxes.

• The location value in the first box shall be set to 0, in the second box shall be set to 1, and shall increase
sequentially thereafter.

NOTE

EDITORS NOTE

Are there other scenarios where an 'mdat' can be large enough to be worth dividing where neither
'stco', 'co64', nor 'iloc' is present? If so, what box(es) should be used to decide on subset
division points?

For fMP4 assets which are split across multiple files:

• One auxiliary 'uuid' C2PA box with box_purpose set to 'merkle' as described below shall be included in each
fragment file immediately preceding the 'moof' box.

• The hash used for a given leaf node in the Merkle tree shall be over all data in its containing single fragment file
except data excluded by the exclusion list.

NOTE
This specification does not enable support for fMP4 assets which are split across multiple files where
individual fragment files contain more than one 'moof' box and/or 'mdat' box.

For fMP4 assets which are stored as a single flat MP4 file with a single 'moov' for all tracks and then one 'moof'
/'mdat' pair for each fragment:

• One auxiliary 'uuid' C2PA box with box_purpose set to 'merkle' as described below shall be included
immediately preceding each 'moof' box.

• The hash used for a given leaf node in the Merkle tree shall be over that 'moof' box plus all data preceding the
next 'moof' box or over all data through the end of the file if there is no further 'moof' box. The hash shall not
cover data excluded by the exclusion list.

IMPORTANT

Taking a c2pa-compliant fMP4 asset which is split across multiple files (i.e., has 'c2pa' boxes
of types 'manifest' and 'merkle') and appending the individual files together will not
produce a single file which is 'c2pa' compliant (nor vice-versa). This is because which boxes
are included in each 'merkle' hash will be different in the two cases. If both forms are
desirable, the second form shall consider the first form as an ingredient and the new manifest
shall include both an 'Ingredient' assertion with relationship 'parentOf' and an 'Actions'
assertion that includes an action of type 'c2pa.repackaged'.

Regardless of how the asset is structured, the fields in the corresponding box described above shall be set as follows.

box_purpose For an auxiliary 'uuid' C2PA box, this value shall be
merkle.
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data When box_purpose is merkle, this value shall contain
raw CBOR bytes indicating how to validate a portion of
the asset as defined as follows. If there are multiple
auxiliary 'uuid' C2PA boxes with box_purpose merkle
for a given Merkle tree in a single file, each shall be
followed by sufficient padding bytes (zero or more) to
make all auxiliary 'uuid' C2PA boxes for that Merkle
tree a fixed size.

NOTE

When there are more than one of these boxes in a single file, i.e., the case where there are large
'mdat'(s) being validated piecemeal, a fixed size is required in order to enable a progressively
downloading client to only download the boxes it needs to begin validation rather than the entire
Merkle tree. Such a client can download enough of the first of these boxes based on the absolute file
byte offset in the active manifest to determine if its uniqueId and localId match the 'mdat' it is
trying to validate. If they do, it can determine the absolute file byte offset to the box it needs to
validate by multiplying the subset number by that size then download just that box. Otherwise, it can
determine the absolute file byte offset to the beginning of the next Merkle tree by multiplying that
fixed size by the current Merkle tree’s total number of leaf nodes, and it can repeat this process until
it locates the box it needs. The total download size for this subset of boxes is very small relative to
the size of a single subset.

12.3.2.3.1. Schema and Example

The schema for this type is defined by the bmff-merkle-map rule in the following CDDL Definition:

; The data structure used to store sufficient information to validate a single 'mdat' box or

; a portion of an 'mdat' box when a Merkle tree is used",
bmff-merkle-map = {
  "uniqueId": int, ; A unique integer used to differentiate local ids
  "localId": int, ; A local id indicating which 'mdat' box this entry pertains to.  This may
not be globally unique
  "location": int, ; Zero-based index into the leaf-most Merkle tree row corresponding to
this 'mdat' box or portion of this 'mdat' box
  ? "hashes": [1* bstr], ; An ordered array representing the set of additional hashes
required to reach a hash in the Merkle tree specified in the manifest from leaf-most (peer
of this node) to root-most (child of node in manifest).  Note that this array may not be
present, e.g. if the manifest itself contains the leaf-most row of the Merkle tree.  Null
hashes are not included in this array.  The algorithm used shall be determined using the
`alg` field from the corresponding entry in the `merkle` field array in the BMFF hash
structure.
}

An example in CBOR Diagnostic Format (.cbordiag) is shown below:

{
  "hashes": [
    b64'TWVub3JhaA=='
  ],
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  "localId": 4402,
  "location": 2203,
  "uniqueId": 1339
}

For files that use a 'tkhd' box to indicate individual tracks, the localId in the preceding CBOR shall be set to the
track_id field of the 'tkhd' box pertaining to the 'mdat' being hashed.

NOTE

EDITORS NOTE

How do we handle the case where there are multiple 'mdat' boxes for untimed media, e.g. a file
that includes multiple image 'mdat' boxes? How do we handle the case where there are multiple
'mdat' boxes of different types, e.g. a file that has both audio/video 'mdat' boxes as well as an
image 'mdat' box (e.g. for a thumbnail)? For scenarios such as these, a 'tkhd' box alone cannot
be used to reference the complete set of different 'mdat' boxes when there are more than one; it
may not be present at all. What box value(s) should be used for localId instead?

12.3.2.4. Dynamic stream generation

Many adaptive bitrate streaming (ABR) implementations store a single version of an asset, e.g., as a flat MP4 or in
another intermediate format, and generate individual asset streams using various codecs, bitrates, etc. at
consumption time. As a result, such a server must either hash said streams and create a C2PA Manifest each time the
content is consumed or, if generation is deterministic, create and cache the hashes and C2PA Manifests once and then
embed them at consumption time.

This also means that such a server must have a signing identity of its own that will be trusted by validators or be able
to sign the generated files on behalf of the content creator in a secure and trustworthy manner.

12.3.2.5. Exclusion List Requirements

For all c2pa.hash.bmff (deprecated) and c2pa.hash.bmff.v2 assertions, the following entries shall always
appear on the exclusion list. Other entries are allowed but not required.

The entire 'uuid' C2PA box shall be excluded. (The 'data' field is ensuring that other 'uuid' boxes are not
excluded.)

xpath = "/uuid"
data = [ { offset = 8, data = b64'2P7D1hsOSDySl1goh37EgQ==' } ]

The entire 'ftyp' and 'mfra' boxes shall be excluded.

xpath = "/ftyp"

xpath = "/mfra"
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NOTE
Previous versions of this specification included additional mandatory exclusions, but it was
discovered that excluding them is insecure.

For all c2pa.hash.bmff.v2 assertions where the bmff-hash-map includes both the hash field and merkle fields,
the following entry shall appear on the exclusion list.

xpath = "/mdat"
subset = { { 16, 0 } }

NOTE
As indicated in the CDDL Definition above, the c2pa.hash.bmff assertion excludes the entire
'mdat' box in this case, but it was discovered that excluding it is insecure.

NOTE

As indicated in the CDDL Definition above, a relative byte offset or relative byte offset plus length that
exceeds the length of the box is allowed; bytes beyond the end of the box are never hashed. For
example, if the mdat box is only 12 bytes long, all of it is hashed and the aforementioned mandatory
exclusion entry has no effect although it is still required.

12.3.2.6. Timed-media streams that are neither audio nor video

Timed-media streams that are neither audio nor video, such as text streams for captions, that the claim generator
wishes to make tamper evident shall be handled the same way as audio and video streams.

12.3.2.7. External references

Externally referenced content declared inside BMFF boxes, such as in a 'dref', 'url', or 'urn' box, that the
claim generator wishes to make tamper evident shall not exclude the referencing box and shall include a separate
cloud data assertion for each external reference to be hashed.

12.3.2.8. Size requirements

If a BMFF-based asset uses 32-bit sizes or offsets in any box(es), e.g. the 'stco' box, and adding boxes to conform to
this specification will push the file size over 4 gigabytes, it is the responsibility of the manifest creator to edit the file to
use appropriate sizes and offsets, e.g. by replacing the 'stco' box with a 'co64' box, before creating the manifest.

12.4. External Manifests
In some cases, it may not be possible (or practical) to embed a C2PA Manifest Store in an asset. In those cases,
keeping the C2PA Manifests externally to the asset is an acceptable model for providing providence to assets. The
C2PA Manifest should be stored in a location, referred to as a manifest repository, that is easily locatable by a
manifest consumer working with the asset, such as by reference or URI. As the C2PA Manifest Store is a JUMBF box, it
shall be served with the JUMBF Media Type, application/x-c2pa-manifest-store.

NOTE
Editors Note

The C2PA is in the process of formally registering the media type with IANA.
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Some common reasons to use an external manifest are:

• It may not be technically possible, such as with a .txt file.

• It may not be practical, such as when the size of the C2PA Manifest Store is larger than the asset’s digital content.

• It may not be appropriate, such as when it would modify an asset that should not be modified.

NOTE a good example of this is creating a manifest for a pre-existing asset.

12.5. Embedding a Reference to the Active Manifest
If the asset has embedded XMP, it is recommended that the claim generator add a dcterms:provenance key to
the XMP, the value (a URI reference) being where to locate the Active Manifest. The URI shall either be a JUMBF URI for
an embedded C2PA Manifest or a standard URI for any non-embedded scenarios, whether stored remotely or locally
on the same storage system as the asset itself.

An example JUMBF URI would be stored as:

<dcterms:provenance>self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4</dcterms:provenance>
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Chapter 13. Entity Diagram
The following diagram provides a look at how all of the pieces of the C2PA system integrate and relate to each other.
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Chapter 14. Cryptography

14.1. Hashing
All cryptographic hashes that are stored in a C2PA Manifest shall be generated using one of the hash algorithms as
described in this section. This section defines both:

• A list of hash algorithms that are allowed for generating hashes of new content as well as required for validating
hashes of existing content (the allowed list), and

• A list of hash algorithms that are required to be supported for validating hashes of existing content but are not
allowed for generating hashes of new content (the deprecated list).

NOTE
This section does not govern algorithms used for soft bindings as described in Section 10.3, “Soft
Bindings”.

An algorithm must appear in no more than one list. An algorithm that is instantiated over multiple output lengths
(such as the various lengths of SHA2) will each be considered different algorithms, and each instantiation must be
listed separately. If an algorithm does not appear in either list, it is forbidden and must not be used or supported.
Algorithms can be removed from the lists in order to implement forbidding an algorithm. For this reason,
implementations must not support additional algorithms on an optional basis.

Implementers should consult this section in the current version of the specification when releasing software updates
and ensure their supported algorithms conform to it.

These lists establish the allowed algorithms for creating hashes and a string algorithm identifier to be used as the
algorithm identifier (usually called alg) in the corresponding field of C2PA data structures. The outputs of hash
functions shall be stored as their binary values encoded into CBOR as byte strings (major type 2) with a declared
length. Wherever a field contains the output of a hash function, an algorithm identifier string field shall be present
within the same structure, or within an enclosing structure, to declare which algorithm was used. A hash algorithm
identifier field should be present in exactly one of these places, but if more than one is present within the structure
and its enclosing structures, the nearest identifier must be used. Nearest is defined first as an identifier that is a sibling
field of the hash value, and then the immediately enclosing structure, up to the root structure.

The allowed list is:

• SHA2-256 ("sha256")

• SHA2-384 ("sha384")

• SHA2-512 ("sha512")

NOTE

The SHA-3 family of hash algorithms are not on the allowed list for consistency with the digital
signature algorithm allowed list, because COSE has not yet established digital signature algorithms
that use a SHA-3 algorithm as the hash algorithm. A future version of this specification will
incorporate SHA-3 for hashing as well as COSE digital signature algorithms that use SHA-3 when they
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are available.

The deprecated list is empty.

14.2. Digital Signatures
All digital signatures that are stored in a C2PA Manifest shall be generated using one of the digital signature
algorithms and key types listed as described in this section. This section defines both:

• A list of digital signature algorithms and key types that are allowed for generating signatures of new content as
well as required for validating signatures of existing content (the allowed list), and

• A list of digital signature algorithms and key types that are required to be supported for validating signatures of
existing content but are not allowed for generating signatures of new context (the deprecated list).

These lists establish the allowed algorithms and key types by referencing an algorithm identifier from the relevant
standards that define algorithms for COSE and their mappings to CBOR identifiers, including but not limited to RFC
8152 and RFC 8230. These standards also specify the hash algorithm used in the signature scheme. Nothing in Section
14.1, “Hashing” shall apply to this use of hash algorithms; if a digital signature algorithm is present in the digital
signature algorithm and key type registry, the use of its specified hash algorithm in the signature scheme shall be
allowed and followed.

NOTE Parenthetical notes in the lists below are explainers provided only as an aid to the reader.

14.2.1. Signature Algorithms

The allowed list is:

• ES256 (ECDSA with SHA-256)

• ES384 (ECDSA with SHA-384)

• ES512 (ECDSA with SHA-512)

• PS256 (RSASSA-PSS using SHA-256 and MGF1 with SHA-256)

• PS384 (RSASSA-PSS using SHA-384 and MGF1 with SHA-384)

• PS512 (RSASSA-PSS using SHA-512 and MGF1 with SHA-512)

• EdDSA (Edwards-Curve DSA)

◦ Ed25519 instance only. No other EdDSA instances are allowed.

The deprecated list is empty.

Implementations must check that keys provided for signing or verification operations are correct for the chosen
algorithm, as required by RFC 8152 section 8.1 for ECDSA, RFC 8152 section 8.2 for EdDSA, and RFC 8230 section 2 and
section 4 for RSASSA-PSS. These requirements are summarized here for convenience:

64

https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8152
https://datatracker.ietf.org/doc/html/rfc8230/
https://datatracker.ietf.org/doc/html/rfc8152#section-8.1
https://datatracker.ietf.org/doc/html/rfc8152#section-8.2
https://www.rfc-editor.org/rfc/rfc8230.html#section-2
https://www.rfc-editor.org/rfc/rfc8230.html#section-4


• ECDSA requires elliptic curve keys on the P-256, P-384, or P-521 elliptic curves.

◦ Although it is recommended to use P-256 keys with ES256, P-384 keys with ES384, and P-521 keys with
ES512, it is not required. Implementations must accept keys on any of these curves for all ECDSA algorithm
choices.

• Ed25519 requires elliptic curve keys on the X25519 elliptic curve.

• RSASSA-PSS requires RSA keys with a modulus length of at least 2048 bits.

Implementations must refuse to generate or verify signatures with keys that are not correct for the algorithm choice.
Implementations may refuse RSA keys with modulus length greater than 16384 bits.

14.2.2. Use of COSE

The signature for the CBOR-encoded claim is produced by CBOR Object Signing and Encryption (COSE) as described in
RFC 8152 sections 4.2 and 4.4.

NOTE

Payloads can either be present inside a COSE signature, or transported separately ("detached
content" as described in RFC 8152 section 4.1). In "detached content" mode, the signed data is
stored externally to the COSE_Sign1_Tagged structure, and the payload field of the
COSE_Sign1_Tagged structure is always nil.

Regardless of whether the payload will be present in or detached from the COSE_Sign1_Tagged signature; the
contents of the payload field of Sig_structure in memory, when constructed to compute or verify a digital
signature, must be populated with that external data as described by the particular use of digital signature in this
specification. The payload field of Sig_structure shall never be nil.

NOTE
For example, when computing or verifying a claim signature, the payload field of the
Sig_structure will contain the contents of the Claim JUMBF box, as described in Section
11.3.2.4, “Signing a Claim” and Section 12.1, “Use of JUMBF”.

14.2.3. Computing the Signature

• The signature is computed or verified as described in RFC 8152 section 4.4. The following additional requirements
apply to the construction of Sig_structure:

◦ The value for the context element shall be Signature1 except where a particular use of digital signatures
in this specification specifies using CounterSignature instead. Signature shall not be used.

◦ The value for the payload element will be specified by each use of digital signatures in this specification.

◦ The external_aad element shall be a bstr of length zero. External authenticated data must not be used.

◦ The alg header specifying the signature algorithm shall be present in the body_protected element. RFC
8152 section 3.1

NOTE
The alg header is a standard COSE header, and therefore is always included in the
protected header map with the integer 1 as its label, as established in the IANA COSE Header
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Parameters Registry. The literal string alg is never used as the label. The
sign_protected element is always omitted when using COSE_Sign1.

• All digital signatures in C2PA structures shall be a COSE_Sign1_Tagged structure as defined in RFC 8152
section 4.2. COSE_Sign1_Tagged contains a COSE_Sign1 structure. The following additional requirements
apply to the construction of COSE_Sign1_Tagged:

◦ The same alg header in the Sig_structure above shall be present in the protected header bucket.

◦ The value for the payload field and whether the payload is present in the signature or detached will be
specified by each use of digital signatures in this specification. When the payload is specified as detached,
its value here must be nil. Conversely, when the payload is present in the signature, the binary contents of
the payload are stored in this field as a bstr.

NOTE
COSE defines nil to be major type 7, value 22 in section 1.3 and uses this value exclusively
for detached content. A byte array (major type 2) of length zero cannot be used to indicate
detached content.

14.2.4. Signature Validation

When producing a signature, if the claim generator can also act as a validator, the claim generator should validate
that the signing credential is acceptable according to Chapter 15, Trust Model for the credential’s type, and produce a
warning if it is not. The claim generator should still allow signing with that credential if so desired. This may be
desirable if it is known the local claim generator’s validator has a different configuration than validators used by the
expected audience of the asset.

When verifying a signature, an in-memory Sig_structure is generated. Its body_protected field is populated
with the contents of the protected header bucket from the COSE_Sign1_Tagged structure (see
https://datatracker.ietf.org/doc/html/rfc8152#section-4.4). For the payload field, if the payload was specified as
present in the signature, it is populated from the payload field of the COSE_Sign1_Tagged structure. If the
payload was specified as detached, the payload field of the COSE_Sign1_Tagged structure will be nil. In this
case, the contents of the payload field of Sig_structure shall be populated from the same external source that
was used in the generation of the signature. These are defined in the places where the digital signature is used in this
specification.

14.2.5. Inclusion of Signer Icons

A C2PA Manifest Consumer may wish to display an icon or logo for the signer. To locate such a graphic, it shall look
inside the embedded certificate for a logotype as defined in RFC 6170. If no logotype is present, the Manifest
Consumer may use icons or logos from other sources in an implementation-dependent manner.

NOTE
The IETF is working on an update for RFC 6170 referred to as RFC 3709-bis-04. It is recommended that
when this update is approved, that it be used instead.
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Chapter 15. Trust Model

15.1. Overview

Trusts signer to
secure their

Trusts issuer to
identify signersSigner Identity

Issuer
Validator

credentials

Trusts validator to
check validity andTrusts assertions are

Consumer
made by the signer correctly identify

signers

The above model shows, in yellow, green and red, the three entities specified in the trust model, which is concerned
with trust in a signer’s identity. In dashed lines, below, is the consumer (who is not specified in the trust model), who
uses the identity of the signer, along with other trust signals, to decide whether the assertions made about an asset
are true.

15.2. Identity of Signers
Identity in the trust model is the means by which a cryptographic signing key is associated with an actor for the basis
of making trust decisions based on any structure (including, but not limited to, claims and manifests) signed with that
key. The identity of a signatory is not necessarily a human actor, and the identity presented may be a pseudonym,
completely anonymous, or pertain to a service or trusted hardware device with its own identity, including an
application running inside such a service or trusted hardware.

The credential should be listed in the COSE protected headers of the COSE_Sign1_Tagged structure used for
digital signatures in all C2PA manifests. The credential may appear in the unprotected headers, for backwards
compatibility with previous versions of this specification. Regardless, exactly one instance of an identity credential
must appear in the union of the protected and unprotected headers. COSE_Sign1_Tagged structures with no
credentials, or two or more credentials, must be rejected. Repeating the same credential more than once, including
separately in the protected and unprotected headers, is also an instance of two or more credentials and must be
rejected.

Each credential type will define the following data to be provided to the validator:

• How the credential is stored in the header value,

• How a trust chain is computed from the signer to an entry in the validator’s trust anchor store for C2PA signers,

• The public key in the credential used to validate the signature, and
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• The time validity period of the credential.

The name of the header to indicate credential type, how the credential is stored in the header value, and how trust
chains are constructed are specified for each credential type in Section 15.4, “Credential Types”.

15.3. Signer Credential Trust
As part of the validation of an asset, the signer’s credential is validated as being trusted to sign manifests. Credential
types are defined in Section 15.4, “Credential Types”.

A validator shall maintain the following lists:

• A list of X.509 certificate trust anchors for C2PA signers,

• A list of accepted Extended Key Usage (EKU) values for C2PA signers, and

• A list of X.509 certificate trust anchors for Time Stamp Authorities.

In this section, "user" refers to human actors that are using C2PA-compliant validators in consumption and authoring
scenarios.

A validator should allow these trust anchor stores to be configured by the user, and should provide default options or
offer lists maintained by external parties that the user may opt into to populate the validator’s trust anchor store for
C2PA signers or Time Stamp Authorities.

A validator may also allow the user to create and maintain a private credential store of signing credentials for each
credential type. This store is intended as an "address book" of credentials they have chosen to trust based on an out-
of-band relationship. For example, a journalist may choose to add sources to their private credential store to facilitate
accepting and validating media with C2PA provenance data attached, even though the sources themselves would
have no reason to be on an externally-maintained trust list used broadly by the general public. Credentials in the
private credential store may be self-issued, and may be anonymous or pseudonymous (that is, containing no
identifying information about the signer, or information that only identifies by pseudonym). The private credential
store shall only apply to validating signed C2PA manifests, and shall not apply to validating time-stamps. The private
credential store shall only allow trust in signer certificates directly; entries in the private credential store cannot issue
credentials and shall not be included as trust anchors during validation.

A validator must not be pre-configured with any entries in a private credential store.

A validator must only add entries to a private credential store in response to a user request to trust the credential.
Similarly, a validator must only remove entries from a private credential store in response to a user request to stop
trusting the credential.

15.4. Credential Types
Each credential type defined in this section may be used to sign C2PA manifests.
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15.4.1. X.509 Certificates

X.509 Certificates are stored as defined by RFC 9360: CBOR Object Signing and Encryption (COSE): Header Parameters
for Carrying and Referencing X.509 Certificates. For convenience, the definition of x5chain is copied below.

IMPORTANT

This specification adds additional requirements beyond those of RFC 9360, which are listed
after the quoted text. In particular, this specification requires all intermediate certificate
authorities' certificates of the signer’s certificate chain to be included in the x5chain header,
and requires claim generators to always place the x5chain header in the protected header
bucket.

x5chain: This header parameter contains an ordered array of X.509 certificates. The
certificates are to be ordered starting with the certificate containing the end-entity key
followed by the certificate that signed it, and so on. There is no requirement for the entire
chain to be present in the element if there is reason to believe that the relying party
already has, or can locate, the missing certificates. This means that the relying party is still
required to do path building but that a candidate path is proposed in this header
parameter.

The trust mechanism MUST process any certificates in this parameter as untrusted input.
The presence of a self-signed certificate in the parameter MUST NOT cause the update of
the set of trust anchors without some out-of-band confirmation. As the contents of this
header parameter are untrusted input, the header parameter can be in either the
protected or unprotected header bucket. Sending the header parameter in the
unprotected header bucket allows an intermediary to remove or add certificates.

The end-entity certificate MUST be integrity protected by COSE. This can, for example, be
done by sending the header parameter in the protected header, sending an 'x5chain' in
the unprotected header combined with an 'x5t' in the protected header, or including the
end-entity certificate in the external_aad.

This header parameter allows for a single X.509 certificate or a chain of X.509 certificates
to be carried in the message.

• If a single certificate is conveyed, it is placed in a CBOR byte string.

• If multiple certificates are conveyed, a CBOR array of byte strings is used, with each
certificate being in its own byte string.

The validator is only expected to have the certificates for its trust anchors. Therefore, when creating the x5chain
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header as part of signing, the claim generator shall include the signer’s certificate and all intermediate certificate
authorities in the header’s value. The trust anchor’s certificate (also called the root certificate) should not be included.

The subjectPublicKeyInfo element of the first or only certificate will be the public key used to validate the
signature. The validity element of the tbsCertificate sequence provides the time validity period of the
certificate.

A previous version of this specification required claim generators to write the string label x5chain only to avoid the
unlikely possibility that the integer label 33 would not be standardized. Integer label 33 has now been standardized,
and this specification now adopts it as standard, and deprecates use of the string label. Therefore:

• Claim generators should use only the integer 33 as the label when inserting this header into a COSE signature.
Claim generators may continue to write the string label x5chain but this behaviour is now deprecated and claim
generators should be updated to use the integer label only. Claim generators shall place this header only in the
protected header bucket of the COSE signature as required above.

• Validators shall accept either the string x5chain or the integer 33 as the label for this header. If both labels are
present, validators shall use the header with the integer label 33 and ignore the header with the string x5chain
as the label. Validators shall accept the header from either the protected or unprotected bucket, to maintain
compatibility with previous versions of this specification. In compliance with Section 15.2, “Identity of Signers”, if
this header appears in both the protected and unprotected buckets with the same label, a validator must reject
the claim signature as malformed due to the presence of multiple credentials.

15.4.1.1. Certificate Profile

This section defines the requirements to validate that an X.509 certificate is acceptable as a signing credential as
described in Section 16.4, “Validate the Signature”.

All certificates must fulfill the following requirements.

• The algorithm field of the signatureAlgorithm field shall be one of the following values:

ecdsa-with-SHA256

RFC 5758 section 3.2

ecdsa-with-SHA384

RFC 5758 section 3.2

ecdsa-with-SHA512

RFC 5758 section 3.2

sha256WithRSAEncryption

RFC 8017 appendix A.2.4
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sha384WithRSAEncryption

RFC 8017 appendix A.2.4

sha512WithRSAEncryption

RFC 8017 appendix A.2.4

id-RSASSA-PSS

RFC 8017 appendix A.2.3

id-Ed25519

RFC 8410 section 3

• If the algorithm field of the signatureAlgorithm field is id-RSASSA-PSS, the parameters field is of
type RSASSA-PSS-params. Its fields shall have the following requirements: RFC 8017 section A.2.3

◦ The hashAlgorithm field shall be present.

◦ The algorithm field of the hashAlgorithm field shall be one of the following values: RFC 8017 appendix
B.1

▪ id-sha256

▪ id-sha384

▪ id-sha512

◦ The maskGenAlgorithm field shall be present.

◦ The algorithm field of the parameters field of the maskGenAlgorithm field shall be equal to the
algorithm field of the hashAlgorithm field.

• If the algorithm field of the algorithm field of the certificate’s subjectPublicKeyInfo is id-
ecPublicKey, the parameters field shall be one of the following named curves: RFC 5480 section 2.1.1.1

◦ prime256v1

◦ secp384r1

◦ secp521r1

• If the algorithm field of the algorithm field of the certificate’s subjectPublicKeyInfo is
rsaEncryption or rsaPSS, the modulus field of the parameters field shall have a length of at least 2048
bits.

All certificates except those in the private credential store for X.509 certificates must fulfill the following additional
requirements to be acceptable.

• Version must be v3. RFC 5280 section 4.1.2.1

• The issuerUniqueID and subjectUniqueID optional fields of the TBSCertificate sequence must not
be present. RFC 5280 section 4.1.2.8

71

https://datatracker.ietf.org/doc/html/rfc8017#appendix-A.2.4
https://datatracker.ietf.org/doc/html/rfc8017#appendix-A.2.4
https://datatracker.ietf.org/doc/html/rfc8017#appendix-A.2.3
https://datatracker.ietf.org/doc/html/rfc8410#section-3
https://datatracker.ietf.org/doc/html/rfc8017#appendix-A.2.3
https://datatracker.ietf.org/doc/html/rfc8017#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc8017#appendix-B.1
https://datatracker.ietf.org/doc/html/rfc5480#section-2.1.1.1
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.1
https://datatracker.ietf.org/doc/html/rfc5280#section-4.1.2.8


• The Basic Constraints extension must follow RFC 5280 section 4.2.1.9. In particular, it must be present with the cA
boolean asserted if the certificate issues certificates, and not asserted if it does not.

• The Authority Key Identifier extension must be present in any certificate that is not self-signed. RFC 5280 section
4.2.1.1

• The Subject Key Identifier extension must be present in any certificate that acts as a CA. It should be present in
end entity certificates. RFC 5280 section 4.2.1.2

• The Key Usage extension must be present and should be marked as critical. Certificates used to sign C2PA
manifests must assert the digitalSignature bit. The keyCertSign bit must only be asserted if the cA
boolean is asserted in the Basic Constraints extension. RFC 5280 section 4.2.1.3

• The Extended Key Usage (EKU) extension must be present and non-empty in any certificate where the Basic
Constraints extension is absent or the cA boolean is not asserted. These are commonly called "end entity" or
"leaf" certificates. RFC 5280 section 4.2.1.12

◦ The anyExtendedKeyUsage EKU (2.5.29.37.0) must not be present.

◦ If the configuration store contains a list of EKUs, a certificate that signs C2PA manifests must be valid for at
least one of the listed purposes.

◦ If the configuration store does not contain a list of EKUs, a certificate that signs C2PA manifests must be valid
for the id-kp-emailProtection (1.3.6.1.5.5.7.3.4) purpose and/or the id-kp-documentSigning
(1.3.6.1.5.5.7.3.36) purpose.

▪ The id-kp-emailProtection purpose is not implicitly included by default if a list of EKUs has been
configured. If desired, it must explicitly be added to the list in the configuration store.

◦ A certificate that signs time-stamping countersignatures must be valid for the id-kp-timeStamping
(1.3.6.1.5.5.7.3.8) purpose.

◦ A certificate that signs OCSP responses for certificates must be valid for the id-kp-OCSPSigning
(1.3.6.1.5.5.7.3.9) purpose.

◦ If a certificate is valid for either id-kp-timeStamping or id-kp-OCSPSigning, it must be valid for
exactly one of those two purposes, and not valid for any other purpose.

◦ A certificate should not be valid for any other purposes outside of the purposes listed above, but the presence
of any EKUs not mentioned in this profile and not in the list of EKUs in the configuration store shall not cause
the certificate to be rejected.

15.4.1.1.1. Certificate Trust Chain

When validating a certificate as the signing credential, if the certificate is present in the private credential store for
X.509 certificates, the certificate is accepted. The private credential store is not consulted when validating time-
stamps.

If the certificate is not present in the private credential store, or the validator does not implement one, the trust chain
shall be built and validated according to the procedure in RFC 5280 section 6 for the particular purpose required
(signing, time-stamping, or OCSP signing) and for the appropriate trust anchor store for that purpose. Any failure of
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that validation algorithm shall mean the chain must be rejected. The private credential store is never included when
building certificate chains; certificates in the private credential store cannot act as CAs.

Only end entity certificates shall be used to sign C2PA manifests or time-stamps. A CA certificate must not be used for
these purposes. Any CA certificate (where the cA boolean in the Basic Constraints extension is asserted) being used to
validate a signature on a C2PA manifest, time-stamp, or OCSP response must be rejected.

A validator must ensure a signing certificate is authorized for the purpose for which it is being used, and reject
certificates used for an unauthorized purpose. A certificate is authorized for a particular purpose if the purpose’s EKU
Object Identifier (OID) is present in the Extended Key Usage extension of the certificate (RFC 5280 section 4.2.1.12).
When validating a certificate chain used to sign a C2PA manifest, the signing certificate must have one of the accepted
EKUs for C2PA signers if configured, or the id-kp-emailProtection (1.3.6.1.5.5.7.3.4) EKU if such a list is not
configured. When validating a certificate chain used to sign a time-stamp, the signing certificate must have the id-
kp-timeStamping (1.3.6.1.5.5.7.3.8) EKU. When validating a certificate chain used to sign an OCSP response, the
signing certificate must have the id-kp-OCSPSigning (1.3.6.1.5.5.7.3.9) EKU.

Except for certificates accepted through the private credential store for X.509 certificates, a validator must verify a
certificate’s compliance with the Certificate Profile, and reject certificates that do not comply. This includes requiring
the presence of the Extended Key Usage extension, as well as a certificate being authorized for no more than one of
the three purposes listed in this section: C2PA signing, time-stamp signing, or OCSP response signing.

NOTE

As described in the Certificate Profile, Certification Authority (CA) certificates which issue certificates
are not required to have an EKU extension, and usually will not. If one is present, it is ignored. This
requirement only applies to end entity certificates signing C2PA manifests, time-stamps, or OCSP
responses. CA certificates cannot be used for signing C2PA manifests, time-stamps, or OCSP
responses.

15.4.1.2. Certificate Revocation

X.509 certificates support revocation status queries. C2PA uses the Online Certificate Status Protocol (OCSP) and
OCSP stapling to implement revocation. C2PA does not use Certificate Revocation Lists (CRLs).

NOTE

Using CRLs requires downloading the entire list of revoked certificates for each Certificate Authority
encountered, which can be time-consuming. Although a CRL could be included in the same way an
OCSP response is stapled, the potential size of a CRL relative to an OCSP response also makes this
undesirable.

A conforming CA should include an AuthorityInfoAccess (AIA) extension (RFC 5280 section 4.2.2.1) to provide access
information for an Online Certificate Status Protocol (OCSP) service operated by the CA.

If the certificate has an AIA extension, revocation information shall be stored in an unprotected header of the
COSE_Sign1 structure with the string label rVals and the value’s schema shall follow the rVals rule in the
following CDDL:

; CBOR version of rVals and related structures based on JSON schema in
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https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010101p.
pdf section 5.3.5.2
rVals = {
  "ocspVals": [1* bstr] 
}

NOTE
The above definition is a CBOR adaptation of a subset of the schema from JAdES section 5.3.5.2,
which only stores OCSP responses, and stores them as binary strings.

Before signing a claim, if a signer’s certificate has the AIA extension, a signer should query the OCSP service indicated
therein, capture the response, and store it in an element of the ocspVals array of the rVals header.

Validating the Certificate Revocation Information

A validator must follow the requirements of RFC 6960, in particular section 3, when constructing an OCSP query and
accepting an OCSP response. If the response is not accepted, or contains a certStatus of unknown, nothing can
be concluded about the certificate’s revocation status, and therefore:

• If the unusable response is in an rVals header, the validator must proceed as if the header was absent.

• If the unusable response is received in reply to an OCSP query at validation time, the validator must proceed as if
it chose not to make the query.

An accepted OCSP response in the rVals header establishes that the signer’s certificate was not revoked at the time
of signing if all of the following requirements are met:

• The manifest has a valid time-stamp, and the attested time falls within the (thisUpdate,nextUpdate)
interval of the response,

• The certStatus field of the response is good, or revoked but with a revocationReason of
removeFromCRL, and

• The signer of the response is an "authorized responder" as defined by RFC 6960 section 4.2.2.2.

NOTE

The removeFromCRL is unique amongst the values of revocationReason because it is
equivalent to a good response. Despite being a type of revoked response, this response indicates
the certificate had temporarily been put "on hold" (the certificateHold reason) previously due
to some concern about its integrity, but that the concern has been resolved and the issuer is stating
the certificate remains trustworthy.

Validators must check the revocationReason of any revoked response to disambiguate the removedFromCRL
case from an actual revocation.

If the rVals header is not present or does not contain an accepted OCSP response, or if the manifest does not have a
time-stamp, but the certificate has an AIA extension, the validator may choose to query the OCSP responder, as
described in Section 16.6, “Validate the Credential Revocation Information”. If it does, and the response is accepted
per the requirements of RFC 6960, it shall establish the signer’s certificate was not revoked at the time of signing if
either of the following requirements is fulfilled:
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• The manifest has a valid time-stamp, and the attested time falls within the (thisUpdate,nextUpdate)
interval of the response, or

• The manifest does not have a valid time-stamp but the current time falls within the
(thisUpdate,nextUpdate) interval of the response,

And both of the following requirements are fulfilled:

• The certStatus field of the response is good, or revoked but with a revocationReason of
removeFromCRL, and

• The signer of the response is an "authorized responder" as defined by RFC 6960 section 4.2.2.2.

If the certStatus field of the response is revoked but with a revocationReason that is not
removeFromCRL, it shall establish the signer’s certificate was not revoked at the time of signing if both of the
following requirements are met:

• The manifest has a valid time-stamp, and the attested time falls within the (thisUpdate,nextUpdate)
interval of the response, and

• The revocationTime in the response is after the attested time-stamp.

Otherwise, the certificate shall be considered revoked at the time of signing and the claim shall be rejected.

15.5. Identity In Assertions
Some assertions (such as stds.schema-org.CreativeWork) allow a person’s identity to be associated in a
defined way with the asset. This identity is purely scoped via the definition in each assertion and does not imply any
larger involvement or responsibility for any assertion made in the claim, or the asset itself. All assertions, as stated
below, are made by a signer.

15.6. Statements
A validator is a manifest consumer that will produce some validation statements about that asset. The actor
consuming the asset, usually through their user agent and its user interface, then has to interpret those statements to
arrive at a set of conclusions of their own about the provenance of the asset they are consuming. These conclusions
will be drawn from these statements, the set of trust relationships that consumer currently has with the actors in the
asset, and the contents of the asset itself.

A validator can make the following true or false statements about the asset they are validating, and no more.

1. The active manifest has not been modified since the active manifest was signed

2. The portions of the asset that are covered by content bindings have not been modified since the active manifest
was produced

3. The claim was produced by a claim generator (typically software), and signed by an actor identified in the subject
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field of the signing credential

4. The assertions of the active manifest are statements by the signer and their contents are not verified

5. The assertions of the active manifest have not been modified since the active manifest was produced

6. The assets referred to by ingredient assertions are not (necessarily) available at validation of the active manifest,
and therefore their hashes cannot be validated

7. The ingredient assertion may contain a validationStatus field that indicates the active manifest signer’s
assessment of the validation state of the ingredient at the time of adding the ingredient

8. The content of ingredient assertions, like all other assertions, is not independently validated

15.7. Endorsement
Endorsements are a way of indicating approval of three possible actions, c2pa.published, c2pa.transcoded
and c2pa.repackaged, that could be applied to an asset in a C2PA manifest in which the asset is used as an
ingredient.

For example, the signer of a C2PA Manifest may want to endorse another party who wishes to transcode its asset. The
signer creates an endorsement that identifies the transcoder, and conveys the endorsement to them (in some method
that is out-of-band from this specification). When the transcoder creates their asset containing the ingredient, they
include the endorsement as a c2pa.endorsement assertion, which lets the manifest consumer know that the
actions they performed have been endorsed.

Endorsements are made by signers, and describe the actor they are endorsing through the use of their signing
credentials and a validity period. These endorsements are conveyed out-of-band from the endorser to the endorsee.
When the endorsee is using an asset created by the endorser as an ingredient in their own asset, they shall include the
endorsement in its C2PA Manifest.

Endorsements endorse the specific actions (described in Section 16.9, “Validate the Endorsements”) that may be
taken by the endorsee, and are therefore valid for asset manifests that use only the specified actions. Actions are only
endorsed by the signer of that action’s referenced ingredient; they cannot be endorsed across more than multiple
C2PA Manifests in the asset’s provenance.

15.7.1. Endorsement Generation

Endorsements are COSE objects (see Section 14.2, “Digital Signatures”), where the COSE payload is an "endorsement
target" data structure encoded as CBOR, as shown below. The endorseeCredential field is an object with a
single field, labelled according to the type of credential used to sign the endorsement. The label of this field indicates
to validators the type of the credential present, so that they know how to decode, parse and validate the credential
correctly. The following table details the format of each of the currently specified credential types:

15.7.1.1. Endorsement Credential Types
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Credential name CBOR label Value type Compares To

Reserved 0

X.509 SubjectPublicKeyInfo 1 A DER-encoded ASN.1
SubjectPublicKeyInfo
structure (as a CBOR bstr),
from the endorsee’s X.509
certificate that will be used
for signing the claims of
assets that this
endorsement is expected to
be used with.

The value of the credential
shall be compared (bitwise
identical) to the
SubjectPublicKeyInfo
structure of the certificate
located in the x5chain or
33 (integer) COSE header of
the active manifest Claim
Signature (see
[x_509_certificates])

Endorsers shall place the credential of the signer they are endorsing and its type in the endorseeCredential. To
limit the length of time that an endorser is lending their endorsement to another signer, the notValidBefore and
notValidAfter fields contain ISO 8601 date times.

The schema for the endorsement target type is defined by the endorsement-target-map rule in the following
CDDL Definition:

endorsement-target-map = {
  "endorseeCredential" : public-credential,  ; A DER-encoded SubjectPublicKeyInfo containing
the public key
  "notValidBefore": tdate, ; The date-time that this endorsement valid from, before this
time it is not valid
  "notValidAfter": tdate ; The date-time that this endorsement expires and is no longer
valid
  ? "metadata": $assertion-metadata-map, ; additional information about the assertion
}

public-credential = {
  $credential-type: any ; an extensible field allowing the specification of the credential
payload
}

$credential-type /= 1 ; credentials with this type are a DER-encoded ASN.1
SubjectPublicKeyInfo structure, as a bstr (specification text for usage)

An example endorsement target is show below:

{
  "endorseeCredential": {
    1: 'A DER-encoded SubjectPublicKeyInfo containing the public key of the signer to be
endorsed'
  },
  "notValidBefore": 0("2021-03-21T20:04:00Z"),
  "notValidAfter": 0("2022-03-21T20:04:00Z")
}
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To sign an endorsement, follow the procedure specified in Section 14.2, “Digital Signatures”, using the serialised
CBOR endorsement-target object as the contents of the payload field. A signer shall not include a x5chain
header and value, as endorsements are validated in the context of their use as an ingredient, and therefore use the
signing credential of that ingredient manifest (see Endorsement Validation). The serialized COSE_Sign1_Tagged
structure resulting from the digital signature procedure is the endorsement that may be conveyed to the signer
identified in the endorsement-target, but the process for conveying it is out of scope of this specification.

15.7.2. Endorsement Storage

If the active manifest signer possesses an endorsement that it wishes to use to endorse an action performed by an
actor, it can choose to embed the endorsement in the manifest it is generating. The procedure for the validation of
such endorsements is covered in Section 16.9, “Validate the Endorsements”. An endorsement is added as an Section
19.15, “Endorsement Assertion” in the active manifest’s assertion store.
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Chapter 16. Validation
The active manifest of an asset is valid only if all the steps in this section are successful. This validation must be
completed before a validator presents a successful result to a human user or begins to render any content. Validating
content as it is rendered to the user is described in Section 16.11, “Validate the Asset’s Content”.

16.1. Status Codes
The validation algorithm outputs status codes to indicate successful or failed portions of the validation process. They
are also used by ingredient assertions to document the validation done on ingredients during the claim generation
process.

The set of standard success and failure codes are defined below. Custom status codes are also permitted, when a
claim generator has a need to record some process-specific status information. The code shall conform to the same
syntax as custom labels, e.g. com.litware. When using custom labels, because they are not inherently success or
failure codes, a boolean success or failure result must be returned as well. This is either part of the output of the
validation algorithm when performing validation, or the value of the success boolean in the validationStatus
object inside an ingredient assertion.

The CDDL Definition for status codes is included in the schema for the ingredient assertion at Section 19.13.5,
“Schema and Example”.

16.1.1. Success codes

Value Meaning url Usage

claimSignature.v
alidated

The claim signature referenced in the ingredient’s claim
validated.

C2PA Claim Signature Box

signingCredentia
l.trusted

The signing credential is listed on the validator’s trust list. C2PA Claim Signature Box

timeStamp.truste
d

The time-stamp credential is listed on the validator’s trust
list.

C2PA Claim Signature Box

assertion.hashed
URI.match

The hash of the the referenced assertion in the ingredient’s
manifest matches the corresponding hash in the assertion’s
hashed URI in the claim.

C2PA Assertion

assertion.dataHa
sh.match

Hash of a byte range of the asset matches the hash declared
in the data hash assertion.

C2PA Assertion

assertion.bmffHa
sh.match

Hash of a box-based asset matches the hash declared in the
BMFF hash assertion.

C2PA Assertion

assertion.access
ible

A non-embedded (remote) assertion was accessible at the
time of validation.

C2PA Assertion
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16.1.2. Failure codes

Value Meaning url Usage

claim.missing The referenced claim in the ingredient’s manifest cannot be
found.

C2PA Claim Box

claim.multiple More than one claim box is present in the manifest. C2PA Claim Box

claim.hardBindin
gs.missing

No hard bindings are present in the claim. C2PA Claim Box

claim.required.m
issing

A required field is not present in the claim. C2PA Claim Box

claim.cbor.inval
id

The cbor of the claim is not valid C2PA Claim Box

ingredient.hashe
dURI.mismatch

The hash of the the referenced ingredient claim in the
manifest does not match the corresponding hash in the
ingredient’s hashed URI in the claim.

C2PA Assertion

claimSignature.m
issing

The claim signature referenced in the ingredient’s claim
cannot be found in its manifest.

C2PA Claim Signature Box

claimSignature.m
ismatch

The claim signature referenced in the ingredient’s claim
failed to validate.

C2PA Claim Signature Box

manifest.multipl
eParents

The manifest has more than one ingredient whose
relationship is parentOf.

C2PA Claim Box

manifest.update.
invalid

The manifest is an update manifest, but it contains a
disallowed assertion, such as a hard binding or actions
assertions.

C2PA Claim Box

manifest.update.
wrongParents

The manifest is an update manifest, but it contains either
zero or multiple parentOf ingredients.

C2PA Claim Box

manifest.inacces
sible

A non-embedded (remote) manifest was inaccessible at the
time of validation.

C2PA Claim Box

signingCredentia
l.untrusted

The signing credential is not listed on the validator’s trust
list.

C2PA Claim Signature Box

signingCredentia
l.invalid

The signing credential is not valid for signing. C2PA Claim Signature Box

signingCredentia
l.revoked

The signing credential has been revoked by the issuer. C2PA Claim Signature Box

signingCredentia
l.expired

The signing credential has expired. C2PA Claim Signature Box

timeStamp.mismat
ch

The time-stamp does not correspond to the contents of the
claim.

C2PA Claim Signature Box
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Value Meaning url Usage

timeStamp.untrus
ted

The time-stamp credential is not listed on the validator’s
trust list.

C2PA Claim Signature Box

timeStamp.outsid
eValidity

The signed time-stamp attribute in the signature falls
outside the validity window of the signing certificate or the
TSA’s certificate.

C2PA Claim Signature Box

assertion.hashed
URI.mismatch

The hash of the the referenced assertion in the manifest
does not match the corresponding hash in the assertion’s
hashed URI in the claim.

C2PA Assertion

assertion.missin
g

An assertion listed in the ingredient’s claim is missing from
the ingredient’s manifest.

C2PA Claim Box

assertion.multip
leHardBindings

The manifest has more than one hard binding assertion. C2PA Assertion Store Box

assertion.undecl
ared

An assertion was found in the ingredient’s manifest that was
not explicitly declared in the ingredient’s claim.

C2PA Claim Box or C2PA
Assertion

assertion.inacce
ssible

A non-embedded (remote) assertion was inaccessible at the
time of validation.

C2PA Assertion

assertion.notRed
acted

An assertion was declared as redacted in the ingredient’s
claim but is still present in the ingredient’s manifest.

C2PA Assertion

assertion.selfRe
dacted

An assertion was declared as redacted by its own claim. C2PA Claim Box

assertion.requir
ed.missing

A required field is not present in an assertion. C2PA Assertion

assertion.json.i
nvalid

The JSON(-LD) of an assertion is not valid C2PA Assertion

assertion.cbor.i
nvalid

The cbor of an assertion is not valid C2PA Assertion

assertion.action
.ingredientMisma
tch

An action that requires an associated ingredient either does
not have one or the one specified cannot be located

C2PA Assertion

assertion.action
.redacted

An action assertion was redacted when the ingredient’s
claim was created.

C2PA Assertion

assertion.action
.redactionMismat
ch

An action that requires an associated redaction either does
not have one or the one specified cannot be located

C2PA Assertion

assertion.dataHa
sh.mismatch

The hash of a byte range of the asset does not match the
hash declared in the data hash assertion.

C2PA Assertion

assertion.bmffHa
sh.mismatch

The hash of a box-based asset does not match the hash
declared in a BMFF hash assertion.

C2PA Assertion

81



Value Meaning url Usage

assertion.boxesH
ash.mismatch

The hash of a general box-like asset format does not match
the hash declared in a general boxes hash assertion.

C2PA Assertion

assertion.cloud-
data.hardBinding

A hard binding assertion is in a cloud data assertion. C2PA Assertion

assertion.cloud-
data.actions

An update manifest contains a cloud data assertion
referencing an actions assertion.

C2PA Assertion

assertion.boxesH
ash.unknownBox

A box other than those expected was found C2PA Assertion

algorithm.unsupp
orted

The value of an alg header, or other header that specifies
an algorithm used to compute the value of another field, is
unknown or unsupported.

C2PA Claim Box or C2PA
Assertion

general.error A value to be used when there was an error not specifically
listed here.

C2PA Claim Box or C2PA
Assertion

16.2. Locating the Active Manifest
The last C2PA Manifest superbox in the C2PA Manifest Store superbox is the active manifest, but locating the C2PA
Manifest Store may involve looking in a number possible locations.

16.2.1. Embedded

The manifest consumer shall look inside the asset for an embedded C2PA Manifest Store in the standard locations for
embedding manifests to see if one is present.

If there are multiple C2PA Manifest Stores present in an asset, they shall all be considered as invalid and the validation
should treat this as if no manifests were located. In the case where this asset is being added as an ingredient, none of
these embedded C2PA manifests shall be included in the ingredient assertion.

16.2.1.1. Special Considerations for PDF

PDF files support a technology called "incremental update", where information is appended to the end of the
document instead of modifying the original. This requires that PDF files support multiple C2PA Manifest Stores -
though there shall only be one per update section.

If there are multiple C2PA Manifest Stores present in a single update section, they shall all be considered as invalid
and the validation should treat this as if no manifests were located. However, any C2PA Manifest Stores present in
early updates of the PDF or of the original PDF, shall still be considered valid and processed accordingly.

16.2.2. By Reference or URI

If there is no embedded C2PA Manifest Store, the following attempts should be made to locate one at a remote
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location.

• If the asset was retrieved via an HTTP connection, the manifest consumer should look in the header of the HTTP
response for a Link header, as defined in RFC 8288, containing a parameter of rel=c2pa-manifest. If
present, a C2PA Manifest Store can be retrieved from that URI reference.

NOTE
HTTP refers to the Hypertext Transfer Protocol defined in RFC 7230, not the specific URL scheme
http://.

• If the asset has XMP and the XMP contains a dcterms:provenance key, the provided URI should be used to
locate the active manifest.

• If no C2PA Manifest Store has been located, the manifest consumer should look for files at the same path or URI,
but with a filename extension of .c2pa. If the C2PA Manifest Store is not found, a manifest consumer may look in
whatever additional places it deems most appropriate to locate it. For example, a child folder of a file system.

NOTE
A manifest consumer is not restricted to only the above locations, it can choose to look in additional
locations as well.

If a manifest was documented to exist in a remote location, but is not present there, or the location is not currently
available (such as in an offline scenario), the manifest.inaccessible error code shall be used to report the
situation.

Information about the IANA media type for a C2PA Manifest Store can be found in the external manifests section.

16.2.2.1. Validating a Match

A manifest consumer may wish to validate that the located C2PA Manifest Store is indeed the one associated with
asset.

If the C2PA Manifest Store was located then the hard binding assertion present in its active manifest shall be used to
validate that it is the matching manifest and whether the asset has been modified without manifest updates. If the
hard binding does not match, it is unknown if that is because of (a) modification of the asset or (b) the wrong C2PA
Manifest Store was located. Accordingly, the manifest consumer shall treat this as a non-matching hard binding and
reject the manifest with a failure code of assertion.dataHash.mismatch if a data hash assertion is used,
assertion.boxesHash.mismatch if a general boxes hash assertion is used, or
assertion.bmffHash.mismatch if a BMFF hash assertion is used.

16.3. Locating the Claim
Once the active manifest has been located, the claim is found by locating, within the active manifest, the JUMBF
Superbox with a label of c2pa.claim and a UUID of 0x6332636C-0011-0010-8000-00AA00389B71 (c2cl).
There shall only be one such box in the active manifest, if more than one is located, the manifest shall be rejected with
a failure code of claim.multiple.
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16.4. Validate the Signature
Retrieve the URI reference for the signature from the value of the claim’s signature field and resolve the URI
reference to obtain the COSE signature. The signature must be embedded in the same manifest as described in
Section 12.1.1, “C2PA Box details”. If the signature URI does not refer to a location within the same C2PA Manifest box
(a self#jumbf location), the claim must be rejected. If no such field is present or the URI cannot be resolved, then
the claim must be rejected with a failure code of claimSignature.missing.

NOTE The signature and the claim need to be in the same manifest to be valid.

Validate that the credential used in the signature is acceptable according to Chapter 15, Trust Model for the
credential’s type. If a chain of trust cannot be built from the credential to an entry in the trust anchor list, the claim
must be rejected with a failure code of signingCredential.untrusted. If the credential is not acceptable per
the requirements of the credential’s type, then the claim must be rejected with a failure code of
signingCredential.invalid. If the signature algorithm is not on the allowed or deprecated list in Section 14.2,
“Digital Signatures”, then the claim must be rejected with a failure code of algorithm.unsupported. After
confirming the credential type and signing algorithm are acceptable, validation should proceed according to the
specified procedure in Section 14.2, “Digital Signatures”. If validation of the signature fails, then the claim must be
rejected with a failure code of claimSignature.mismatch.

For the remainder of this chapter, headers refer to the union of the set of protected and unprotected header
parameters in the COSE signature. Unless otherwise specified in Section 14.2, “Digital Signatures” or Section 15.4,
“Credential Types”, a header may appear in either bucket. RFC8152 section 3 describes COSE headers.

16.5. Validate the Time-Stamp
If the sigTst header is present, the claim is valid if the tstTokens array contains at least one tstToken whose
val property is an RFC3161-compliant TimeStampResp which satisfies the following requirements. To aid in
diagnosing time-stamp problems, a validator should maintain a list called timeStampStatusCodes which is also
described in the following requirements:

• The time-stamp contains a message imprint as described in Section 11.3.2.5, “Time-stamps” that matches the
claim being validated. If it does not, the time-stamp must be ignored, and the failure code
timeStamp.mismatch should be added to timeStampStatusCodes.

• The time attested by the Time Stamp Authority (TSA) falls within the validity period of the signing credential. If it
does not, the time-stamp must be ignored.

• The attested time falls within the validity period of the TSA’s signing certificate. If it does not, the time-stamp
must be ignored, and the failure code timeStamp.outsideValidity should be added to
timeStampStatusCodes.

• A trust chain can be built to an entry in the TSA trust store as described in Section 15.3, “Signer Credential Trust”.
If the TSA’s certificate cannot be located (as described in RFC 3161 section 2.4.1), the time-stamp must be
ignored, the failure code timeStamp.untrusted should be added to timeStampStatusCodes.
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NOTE

Time-stamps remain valid even after the signing credential of the time-stamp authority expires, so
long as the attested time falls within the time-stamp authority’s certificate’s validity period. This is a
special type of trust extended only to time-stamp authorities. At time of validation, when a time-
stamp is present, validators must use the attested time, and not the current time, when determining
the time validity of the signing certificate and the time-stamp authority’s certificate.

At this time, the revocation status of a Time Stamp Authority’s certificate is neither captured at
signing time nor validated at validation time.

If the sigTst header is not present, or if it is present but no time-stamp tokens satisfy the above requirements, then
the claim is valid if the current time at validation is within the validity period of the signer’s credential. If it is not, the
claim must be rejected with a failure code of signingCredential.expired.

If the claim is rejected with a failure code of signingCredential.expired, and the sigTst header is present,
and no time-stamp tokens satisfy the above requirements, and timeStampStatusCodes is non-empty, then the
validator should also return timeStampStatusCodes.

A validator may stop processing further time-stamp tokens in the tstTokens array after validating that there exists
one token that satisfies the above requirements. This is because there is no difference between one or multiple valid
time-stamps being present.

16.6. Validate the Credential Revocation Information
If the signer’s credential type does not support revocation status, or the credential’s issuer did not provide a method
to query its revocation status, the validator presumes the credential is not revoked.

If the signer’s credential type supports revocation, and the credential’s issuer provided a method to query its
revocation status:

• If the rVals header is present, its contents shall be validated as described in Section 15.4, “Credential Types” for
the signer credential type.

• If the rVals header is not present, and the signer’s credential is considered valid by the requirements of Section
16.4, “Validate the Signature” and Chapter 15, Trust Model, a validator may choose to query the credential status
method to determine if the credential is currently revoked.

◦ If the validator does not query the credential status, the validator shall presume the credential is not revoked.

◦ If the validator does query the credential status, it shall determine the status from the response as described
in Section 15.4, “Credential Types” for the signer’s credential type.

NOTE
Querying the credential status method can reveal to an observer the identity of the asset being
validated, and so this query is optional.

NOTE
When a signer’s credential is revoked, this does not invalidate manifests that were signed before the
time of revocation. The inclusion of the rVals header combined with a time-stamp provides proof
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that the signer’s credential was valid at the time of signing. Signers are encouraged to include
revocation information and time-stamps to avoid the necessity of a query at validation time.

In all cases, if the credential is deemed revoked at the time of signing, the claim shall be rejected with a failure code of
signingCredential.revoked.

16.7. Validate the Assertions

16.7.1. Validate the correct assertions for the type of manifest

Depending on the type of manifest, there are assertions that are either required or forbidden. A validator shall check
for required and not-permitted assertions.

1. If it is a standard manifest

a. Validate that there is exactly one hard binding to content assertion - either a c2pa.hash.data, a
c2pa.hash.boxes, a c2pa.hash.bmff (deprecated), or a c2pa.hash.bmff.v2 based on the type of
asset for which the manifest is destined. If no such assertion is present, the manifest must be rejected with a
failure code of claim.hardBindings.missing. If there is more than one such assertion, the manifest
must be rejected with a failure code of assertion.multipleHardBindings.

b. Validate that there are zero or one c2pa.ingredient assertions whose relationship is parentOf. If
there is more than one, the manifest must be rejected with a failure code of
manifest.multipleParents.

2. If it is an update manifest

a. Validate that there are not any c2pa.hash.data, c2pa.hash.boxes, c2pa.hash.bmff,
c2pa.hash.bmff.v2, c2pa.actions, c2pa.actions.v2 or Thumbnail assertions. If there are, the
manifest must be rejected with a failure code of manifest.update.invalid.

b. Validate that there is exactly one c2pa.ingredient assertion and whose relationship is parentOf.
If there is not (i.e., either it is missing, there are more than one, or the value of relationship is not
parentOf), the manifest must be rejected with a failure code of manifest.update.wrongParents.

16.7.2. Preparing the list of redacted assertions

For each manifest, there may be a set of its assertions that were redacted from it. The list of those assertions is not
found in the manifest itself but instead in a manifest that references it as an ingredient. Therefore a validator, when
processing a claim, shall gather the set of redacted assertion for each ingredient manifest based on each
hashed_uri listed in the redacted_assertions field. A claim’s redacted_assertions field shall never
include a hashed_uri to any of its own assertions.

16.7.3. Assertion Validation

Each assertion in the assertions field of the claim is a hashed_uri structure. For each assertion, the validator
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must:

1. If the URI reference in the url field is in the list of redacted assertions:

a. If the assertion’s label is c2pa.actions or c2pa.actions.v2, the claim must be rejected with a failure
code of assertion.action.redacted as c2pa.actions and c2pa.actions.v2 assertions shall
not be redacted.

b. Otherwise, the redacted assertion is considered valid, and validation continues to the next assertion.

2. For all other assertions:

a. Resolve the URI reference in the url field to obtain its data. If the URI does not refer to a location within the
same C2PA Manifest Store (a self#jumbf location), the claim must be rejected. If the URI cannot be
resolved and the data retrieved, the claim must be rejected with a failure code of assertion.missing.

NOTE
A claim can refer to an assertion in a different C2PA Manifest box than the one it is in,
provided that they are both in the same C2PA Manifest Store.

i. If the assertion’s label is c2pa.cloud-data:

A. If the label field of the external assertion is c2pa.hash.data, c2pa.hash.boxes,
c2pa.hash.bmff, or c2pa.hash.bmff.v2, the claim must be rejected with a failure code of
assertion.cloud-data.hardBinding.

B. If the manifest is an update manifest and the label field of the external assertion is
c2pa.actions or c2pa.actions.v2, the claim must be rejected with a failure code of
assertion.cloud-data.actions.

ii. Determine the hash algorithm identifier as determined by following the procedure described in Section
14.1, “Hashing”:

A. If an alg field is present in the hashed_uri structure, that determines the hash algorithm.

B. If an alg field is not present in the hashed_uri structure, an alg field must be present in an
enclosing structure, and the nearest instance present determines the hash algorithm.

C. If no alg field is found in any of these locations:

I. If an alg field is present in the claim, that determines the hash algorithm.

II. If no alg field is present in the claim, the claim must be rejected with a failure code of
assertion.hashedURI.mismatch.

iii. If the assertion’s label is c2pa.actions or c2pa.actions.v2:

A. For each action in the actions list:

I. If the action field is c2pa.opened, c2pa.placed, c2pa.removed, c2pa.repackaged,
or c2pa.transcoded:

1. Check the ingredient field that is a member of the parameters object for the presence
of a JUMBF URI. If the JUMBF URI is not present, or cannot be resolved to the related
ingredient assertion, the claim must be rejected with a failure code of
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assertion.action.ingredientMismatch.

2. Follow the JUMBF URI link in the ingredient field to the ingredient assertion. Check that
the URI link resolves to an assertion in the active manifest. If it does not, the claim must be
rejected with a failure code of assertion.action.ingredientMismatch.

3. For c2pa.opened, c2pa.repackaged, or c2pa.transcoded: Check that the value of
the relationship field is parentOf. If it is not, the claim must be rejected with a failure
code of assertion.action.ingredientMismatch.

4. For c2pa.placed or c2pa.removed: Check that the value of the relationship field is
componentOf. If it is not, the claim must be rejected with a failure code of
assertion.action.ingredientMismatch.

5. Check the c2pa_manifest field in the ingredient assertion for the presence of a hashed
URI. If the hashed URI is not present, or cannot be resolved to a manifest, the claim must be
rejected with a failure code of assertion.action.ingredientMismatch.

II. If the action field is c2pa.redacted:

1. Check the redacted field that is a member of the parameters object for the presence of a
JUMBF URI. If the JUMBF URI is not present, or cannot be resolved to an assertion, the claim
must be rejected with a failure code of assertion.action.redactionMismatch.

iv. Locate the value of the alg field in the allowed list or the deprecated list in Section 14.1, “Hashing” to
determine the hash algorithm. If it is not present in either list, the claim must be rejected with a failure
code of algorithm.unsupported.

v. Compute the hash of the assertion using that algorithm and the procedure described in Section 8.3.1.3,
“Hashing JUMBF Boxes”.

vi. Compare the computed hash value with the value in the hash field. If they do not match, the claim must
be rejected with a failure code of assertion.hashedURI.mismatch.

vii. Otherwise, the assertion is valid and validation continues to the next assertion.

Then, for each element of the claim’s own redacted_assertions array, if any element of the claim’s
assertions array has a url field equal to that value, the claim must be rejected with a failure code of
assertion.selfRedacted. A claim cannot redact its own assertions, only those of its ingredients.

16.7.3.1. Validation of References

Some assertions and other structures support referencing other boxes in the C2PA Manifest via the use of a
hashed_uri. For example, there can be various references Actions, Ingredient and thumbnail assertions, the W3C
Credential Store, and Data Boxes. In those cases, when validation is taking place, and the destination of the
hashed_uri cannot be located (i.e., that data isn’t present where it is supposed to be) then it shall be treated as a
validation failure.

NOTE
As described in Chapter 9, W3C Verifiable Credentials, any proofs present inside a W3C Verifiable
Credential are not validated. Like all contents of an assertion, C2PA only guarantees the contents of
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the credential are integrity-protected.

16.7.4. External Data Validation

The contents of a cloud data assertion contains the URI references to and hashes of external data, are validated like
any other assertion, but those references are not retrieved and validated as part of standard validation. A validator
must first successfully validate a claim before attempting to retrieve the external data referenced. A validator must
not attempt to retrieve external data from a rejected claim. As the retrieval of external data is optional, the inability to
retrieve or validate external data shall not cause a claim to become rejected.

If a validator chooses to retrieve any of the external data in a cloud data assertion, the validator must:

1. First, determine the hash algorithm to be used.

a. If an alg field is present in the hashed_ext_uri structure, that determines the hash algorithm. If an alg
field is not present, the validator must abort the attempt to retrieve the external data.

b. Locate the value of the alg field in the allowed list or the deprecated list in Section 14.1, “Hashing” to
determine the hash algorithm. If it is not present in either list, the validator must abort the attempt to retrieve
the external data.

NOTE
The alg field is mandatory in hashed_ext_uri, so no recursive procedure to determine
the hash algorithm is required.

2. Resolve the URI reference in the url field to obtain its data. If the URI cannot be resolved and the data retrieved,
the validator must abort the attempt to retrieve the external data.

3. If the size of the retrieved data is not equal to the value of the size field, the validator must return a failure code
of assertion.hashedURI.mismatch to the application and not provide the retrieved data.

4. Validate that the content type returned in the Content-Type header of the HTTP response is equal to the
declared content type. If they do not match, the validator must return a failure code of
assertion.hashedURI.mismatch to the application and not provide the retrieved data. The declared
content type is determined by:

a. For external data, the content type is determined by the dc:format field of the hashed_ext_uri
structure. If the dc:format field is absent, content type validation is always successful.

b. For a cloud data assertion, if the dc:format field is present in its location field, that determines the
content type and the value of the cloud data assertion’s content_type field is ignored. If location does
not have a dc:format field, then the assertion’s content_type field determines the content type.

5. Compute the hash of the data. For a cloud data assertion, use the hash algorithm and the procedure described in
Section 8.3.1.3, “Hashing JUMBF Boxes” on the retrieved content. For external data, use the hash algorithm and
the exact retrieved content as input to the hash function.

a. Compare the computed hash value with the value in the hash field. If they do not match, the validator must
return a failure code of assertion.hashedURI.mismatch to the application and not provide the
retrieved data.
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b. Otherwise, the retrieved data is successfully provided to the application.

16.8. Recursively Validating Integrity of Ingredients
A validator must perform the above validation steps for the asset being presented and its manifest. If any of the above
steps conclude the manifest is invalid, that manifest must be rejected with the indicated failure code.

An asset’s manifest may list one or more ingredients. For standard manifests, a validator may choose to optionally
recurse through any ingredient manifests, however the parentOf ingredient of an update manifest shall be
validated by the procedure below. There is no requirement that signers of ingredient manifests are trusted by the
validator (except in the case of endorsement validation), and building of trust chains of signers of ingredients shall not
be attempted. Instead, as the ingredient is included by the signer of the active manifest, and if the signer of the active
manifest is accepted per the rules above, ingredient manifests will share in that trust for the purposes of this recursive
validation. Applications should not display data from ingredient manifests with failed integrity checks. If the
application chooses to display such data, it must flag the display with a warning about the failed integrity check, and
that the data cannot be reliably attributed to the ingredient manifest’s signer nor to the asset’s manifest’s signer.

When ingredients are being added to an asset as part of an authoring workflow, the ingredient may undergo full
validation and the results expressed in a validation status. In this scenario, the ingredient’s manifest is considered the
active manifest for validation purposes, before the ingredient is added to another asset’s ingredients.

For consumption scenarios, it is expected that problems with ingredient manifests from a standard manifest would be
ignored during normal consumption use but may be surfaced as a warning if a user opts to explore the provenance
history. However, the parentOf ingredient of an update manifest shall be surfaced.

In authoring scenarios, it may be desirable to more prominently raise warnings so that a creator making use of such
an asset with a flawed provenance history can make an informed decision of how to proceed.

If the manifest is an update manifest, or if a validator chooses to validate the ingredients of a standard manifest, then
for each ingredient, it must recursively:

• If the ingredient does not have a c2pa_manifest field

1. If the manifest is a standard manifest, then the ingredient is accepted.

2. If the manifest is an update manifest, then the claim must be rejected with a failure code of
manifest.update.wrongParents.

• If the ingredient does have a c2pa_manifest field:

1. Create an list of redacted assertions which is the concatenation of the claim’s redacted_assertions
array with any pre-existing redacted assertions list from previous recursive calls. This list is therefore only the
redacted assertions from the active manifest’s claim and any ingredients along the path to the current
ingredient.

2. Resolve the URI reference in the url field to obtain the ingredient claim’s manifest. If the URI reference
cannot be resolved, the ingredient claim is rejected with a failure code of claim.missing.
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3. Determine the hash algorithm identifier as determined by following the procedure described in Section 14.1,
“Hashing”:

a. If an alg field is present in the hashed_uri structure, that determines the hash algorithm.

b. If an alg field is not present in the hashed_uri structure, an alg field must be present in an enclosing
structure, and the nearest instance present determines the hash algorithm.

c. If no alg field is found in any of these locations, the claim must be rejected with a failure code of
ingredient.hashedURI.mismatch.

4. Locate the value of the alg field in the allowed list or the deprecated list in Section 14.1, “Hashing” to
determine the hash algorithm. If it is not present in either list, the claim must be rejected with a failure code
of algorithm.unsupported.

5. Compute the hash of the ingredient manifest’s data using that algorithm and the procedure described in
Section 8.3.1.3, “Hashing JUMBF Boxes”.

6. Compare the computed hash with the value in the hash field. If the hashes are not equal, the claim must be
rejected with a failure code of ingredient.hashedURI.mismatch.

7. If the ingredient contains a validationStatus field, each of the entries in the array shall be evaluated. If
the code field of any validationStatus equals a failure code or has a success field with a value of
false, as defined at Section 16.1.2, “Failure codes”, the ingredient’s claim is admitted. An admitted manifest
is treated like an accepted manifest, but with an explicit indication that it may contain validation errors that
are known to the signer. If admitted in this way, the validator must present each validationStatus
present in the validationStatus field array as part of any exploration of the provenance history.
Validators should perform full validation if exploration of the provenance history of the ingredient is
requested to indicate where there are validation errors.

NOTE
The presence of a validationStatus with a failure code or with a success field with a
value of false is an explicit statement by the signer that they acknowledged and have
chosen to override validation errors in the ingredient’s claim itself.

8. Otherwise, validate the ingredient claim and assertions as described beginning in Section 16.4, “Validate the
Signature”, except skip establishing signer credential trust, as this is not applicable to ingredients.

a. When validating the assertions as described in Section 16.7, “Validate the Assertions”, provide a list of
redacted assertions as an input.

b. The validator may optionally recursively validate the ingredient’s ingredients. If it does and those are
accepted, the ingredient’s claim is accepted. If any are rejected, the ingredient’s claim is rejected. If the
validator chooses not to recurse further, the ingredient’s claim is accepted.

16.9. Validate the Endorsements
Endorsement validation shall only be attempted if the active manifest first meets a number of conditions:

• An actions assertion is present in the assertion store
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• There is exactly one ingredient assertion

Retrieve the endorsement assertion in the active manifest, as described in Section 19.15, “Endorsement Assertion”. In
order to provide resilience in the case of a claim generator unexpectedly adding multiple endorsement assertions to
an assertion store, a validator may iterate through the validation process below with each endorsement, stopping the
iteration immediately if an endorsement validates successfully.

For each action object in the actions assertion:

1. Check that the action field is set to c2pa.published, c2pa.transcoded or c2pa.repackaged. If any
other action is present, fail the endorsement process for this manifest and do not proceed with further validation.

2. Check the ingredient field that is a member of the parameters object for the presence of a JUMBF URI. If the
JUMBF URI is not present, or cannot be resolved to the related ingredient assertion, skip endorsement for this
action.

3. Follow the JUMBF URI link in the ingredient field to the ingredient assertion. Check that the URI link resolves
to an assertion in the active manifest. If it does not, skip endorsement for this action. Check that the
relationship field is parentOf. If it is not, skip endorsement for this action.

4. Check the c2pa_manifest field in the ingredient assertion for the presence of a hashed URI. If the hashed URI is
not present, or cannot be resolved to a manifest, skip endorsement for this action.

5. Follow the JUMBF URI link in the c2pa_manifest field to the ingredient’s manifest. Ensure that this ingredient
manifest has been validated according to Section 16.8, “Recursively Validating Integrity of Ingredients”, but do
not skip the establishing of signer credential trust. If it does not validate, skip endorsement for this action.

6. Validate the endorsement as described in Section 16.4, “Validate the Signature”, using the credential of the
ingredient manifest signer. If a signing credential is present in the endorsement’s signature’s headers, it shall not
be used for validation. If validation fails, skip this action.

7. Validate the endorsement-target payload itself, following the steps below:

a. Compare the endorseeCredential to the credential of the active manifest signer, according to the table
found in Section 15.7.1.1, “Endorsement Credential Types”. If the comparison fails, skip this endorsement.

b. If the active manifest is timestamped, then the time-stamp must fall within the endorsement’s validity time
range. If it does not, skip this endorsement.

c. If the active manifest is not timestamped, then the time of validation must fall within the endorsement’s
validity time range. If it does not, skip this endorsement.

d. If validation fails, skip this endorsement. If validation succeeds, mark that action as endorsed.

When endorsement validation has completed, for each actions assertion in the active manifest where all actions
are marked as endorsed, the actions assertion itself shall be marked as endorsed in the validation results returned
by the validator.
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16.10. Visual look of Validation
Here is a visual representation of the process of validating a claim (and its assertions).

Figure 14. Validating a Claim

16.11. Validate the Asset’s Content
If the active manifest is an update manifest, its Section 10.2, “Hard Bindings” are inherited from the parentOf
ingredient’s manifest. If that manifest is also an update manifest, the search for a standard manifest shall recurse
though the chain of ingredients. If no standard manifest is found, then the manifest shall be rejected with a failure
code of manifest.update.wrongParents.

16.11.1. Validating a data hash

Once a standard manifest (and its bindings) has been located, the exclusion range(s) shall be extracted from the
c2pa.hash.data assertion.

If any update manifests were encountered then the length value of the exclusion range whose start value is the
offset of the start of the entire C2PA manifest store shall be treated as the current length of the entire C2PA manifest
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store plus any file format specific extras.

The hash algorithm (alg) specified in that c2pa.hash.data shall be computed over the bytes of the asset, minus
those specified in the exclusion range(s).

If the hash algorithm specified in the alg field does not appear in the allowed or deprecated list in Section 14.1,
“Hashing”, then the manifest shall be rejected with a failure code of algorithm.unsupported. If the resultant
hash does not match the value of the hash field in the c2pa.hash.data, then the manifest shall be rejected with a
failure code of assertion.dataHash.mismatch.

16.11.1.1. Hashing of JPEG-1 files

In JPEG-1 files, the file format extras described above would include any APP11 markers and their respective
segment length bytes for APP11 segments. Because the segment lengths are inside the exclusion range, a validator
shall match the total length of the exclusion range with that of the total length of all APP11 segments representing
the C2PA Manifest to ensure that the length was not tampered with.

NOTE
A JPEG-1 file can contain APP11 segments for reasons other than C2PA (e.g., JPEG 360 or JPSec) and
those are not included in these calculations.

16.11.2. Validating a BMFF-hash

For any portions of an asset rendered for presentation to a user, including but not limited to audio, video, or text, the
corresponding hard binding corresponding to the rendered content must be validated in accordance with Section
10.2, “Hard Bindings”. If at any time content fails to be validated, the validator must clearly signal to the user that
some of the content does not match the claim, and if possible, should indicate what part of the content did not
validate. If any content is absent for which content bindings exist, discovery of this absence is also a validation failure.
The validator must continue to report validation has failed, even if later portions of the content validate correctly.

For content that is not wholly available before rendering begins, such as during adaptive bitrate streaming (ABR) and
progressive download, absence of not-yet-available portions of content is not considered a validation failure. As the
content becomes available, the validator must validate each portion of the content before it is rendered as previously
described. In addition, the validator must validate that the sequence of said content is the same as when the manifest
was produced. Unless the player has explicitly signalled the validator that a discontinuity is expected (e.g., when the
consumer performs a manual seek operation via the UI), the validator must clearly signal to the user that an
unexpected discontinuity has occurred whenever the sequence does not match. This includes validating that the
location values for a given Merkle tree start at zero and increments by one for each following chunk; equivalently,
the location value always indicates which chunk is being rendered.

For content that is intentionally not being rendered as the claim generator originally intended, such as during fast-
forward, rewind, or playback at a different speed, the validator may not be able to validate the content. In this case,
the validator must clearly signal to the user that the content cannot be validated during the corresponding operation.

If the hash algorithm specified in the alg field does not appear in the allowed or deprecated list in Section 14.1,
“Hashing”, then the manifest shall be rejected with a failure code of algorithm.unsupported. The
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assertion.bmffHash.mismatch failure code is used for all other failures described in this section.

16.11.3. Validating a general box hash

Once a standard manifest (and its bindings) has been located, the list of boxes to be validated shall be extracted from
the c2pa.hash.boxes assertion. The boxes must appear in the asset in the same order that they appear in the
array, including the box containing the C2PA Manifest. If there are any other boxes present in the asset, then the
manifest shall be rejected with a failure code of assertion.boxesHash.unknownBox.

IMPORTANT

JPEG Special Handling

When validating a JPEG, a validator will need to check that each box identified with the
special C2PA box identifier is indeed an APP11 containing some or all of the C2PA Manifest
Store. The C2PA Manifest Store can be identified by it being a JUMBF superbox with a label of
c2pa and a UUID of 0x63327061-0011-0010-8000-00AA00389B71 as described in
Section 12.1.1.2, “Manifest Store”.

If an APP11 that is not part of the C2PA Manifest Store is present and not included in the list of
hashed boxes, then the manifest shall be rejected with a failure code of
assertion.boxesHash.unknownBox.

If the hash algorithm specified in any alg field does not appear in the allowed or deprecated list in Section 14.1,
“Hashing”, then the manifest shall be rejected with a failure code of algorithm.unsupported.

For each box listed in the names and boxes array, the specified hash algorithm shall be computed over the bytes of
the box (along with any associated header). If there are multiple entries in a names array, the hash value for that
range of boxes shall be computed from the start of the first box (in the range) until the end of the last box (in the
range). This would include any arbitrary bytes that may be present between boxes.

If any resultant hash does not match the value of the hash field for those boxes, then the manifest shall be rejected
with a failure code of assertion.boxesHash.mismatch.
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Chapter 17. User Experience

17.1. Approach
The C2PA intends to provide clear recommendations and guidance for implementers of provenance-enabled user
experiences (UX). Developing these recommendations is an ongoing process that involves diverse stakeholders, with
the results balancing uniformity and familiarity with utility and flexibility for users across contexts, platforms, and
devices. These recommendations can be found in the User experience guidance document.

17.2. Principles
The UX recommendations aim to define best practices for presenting C2PA provenance to consumers. The
recommendations strive to describe standard, readily recognizable experiences that:

• provide asset creators a means to capture information and history about the content they are creating, and

• provide asset consumers information and history about the content they are experiencing, thereby empowering
them to understand where it came from and decide how much to trust it.

User interfaces designed for the consumption of C2PA provenance must be informed by the context of the asset. We
have studied 4 primary user groups and a collection of contexts in which C2PA assets are encountered. These user
groups have been defined in the C2PA Guiding Principles as Consumers, Creators, Publishers and Verifiers (or
Investigators). To serve the needs of each of these groups across common contexts, exemplary user interfaces are
presented for many common cases. These are recommendations, not mandates, and we expect best practices to
evolve.

17.3. Disclosure Levels
Because the complete set of C2PA data for a given asset can be overwhelming to a user, we describe 4 levels of
progressive disclosure which guide the designs:

• Level 1: An indication that C2PA data is present and its cryptographic validation status.

• Level 2: A summary of C2PA data available for a given asset. This level should provide enough information for the
particular content, user, and context to allow the consumer to understand to a sufficient degree how the asset
came to its current state.

• Level 3: A detailed display of all relevant provenance data. Note that the relevance of certain items over others is
contextual and determined by the UX implementer.

• Level 4: For sophisticated, forensic investigatory usage, a tool capable of revealing all the granular detail of
signatures and trust signals is recommended.
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17.4. Public Review, Feedback and Evolution
The team authoring the UX recommendations is cognizant of its limitations and potential biases, recognizing that
feedback, review, user testing and ongoing evolution is a key requirement for success. The recommendations will
therefore be an evolving document, informed by real world experiences deploying C2PA UX across a wide variety of
applications and scenarios.
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Chapter 18. Information security

18.1. Threats and Security Considerations
This section provides a summary of information security considerations and processes for technology described in
the C2PA core specification. More detailed content will be provided in future releases of C2PA material including the
Guidance document.

18.1.1. Context

Information security is a principal concern of C2PA. C2PA maintains a threat model and security considerations for the
C2PA specification. This effort complements other security-related work within C2PA. Associated documentation is
currently in development and can be found at Security Considerations.

The C2PA is developing security considerations documentation that includes:

• A summary of relevant security features of C2PA technology

• Security considerations for practical use of C2PA technology

• Threats to C2PA technology and respective treatment of those threats, including countermeasures

18.1.2. Threat modelling process overview

The C2PA builds security into our designs as they are being developed, but also expects that security design and
threat modelling will continue as the system, ecosystem, and threat landscape evolve.

To this end, the C2PA uses a focused threat modelling process to support development of a strong security and
privacy design. Outcomes of the effort directly support development of explicit threats and security considerations
documentation, but also facilitate security thinking throughout the design process.

The threat modelling process combines synchronous (live) threat modelling sessions consisting of focused groups of
subject matter experts (SMEs) with asynchronous development of content. The number of attendees in each
synchronous session is kept small to promote efficient discussions, but all members of the C2PA have the opportunity
to participate via either modality.

Like other security activities, we expect our threat modelling process to evolve with the C2PA ecosystem. Process
documentation is considered a guide rather than a strict directive on how threat modelling works within the C2PA.

18.1.2.1. References

A variety of references and experiences are used to inform threat modelling and related security activities for the
C2PA. This section provides a subset of public documents for reference.

• IETF on security considerations
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• IETF on privacy considerations (guidelines)

• W3C security and privacy self-review questionnaire

• OAuth2 threat model (example)

• Threat modelling: Designing for Security

• OWASP Threat modelling

• Microsoft Threat modelling

18.2. Harms, Misuse, and Abuse

18.2.1. Introduction

The C2PA Guiding Principles establish that C2PA specifications must be reviewed with a critical eye towards the
potential abuse or misuse of the framework to cause unintended harms, threats to human rights, or disproportionate
risks to vulnerable groups globally.

To ensure that the C2PA is meeting this aspect of its principles, the harms, misuse, and abuse assessment aims to
identify and address potential concerns during the specifications development and as encountered in subsequent
implementations.

In addition, the specifications are being reviewed to:

• Anticipate and mitigate potential abuse and misuse;

• Address common privacy concerns of its users; and

• Consider the needs of users and stakeholders throughout the world.

18.2.2. Considerations

The harms, misuse, and abuse assessment is an ongoing process. The information presented in the Harms Modelling
documentation should not be considered the end result of a comprehensive evaluation, but as a basis for ongoing
discussions centered on impacted communities, and aimed at mitigating potential abuse and misuse and protecting
human rights.

There are two critical aspects of the approach:

Ongoing

The harms, misuse, and abuse assessment necessarily accompanies the design and development, as well as
implementation and use-stages of the C2PA by continuously informing the specifications development process,
the implementation and user-experience guides, sensitization efforts, the governance of the Coalition and
potentially multilateral cooperation for the promotion of a diverse C2PA ecosystem that serves a broad range of
global contexts.
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Multi-disciplinary and diverse

The harms, misuse, and abuse assessment should be a collaborative effort that includes multi-disciplinary experts
and a broad range of stakeholders with lived, practical and technical experience of the issues from diverse
geographical locations, cultural backgrounds and individual identities.

18.2.3. Assessment

Harms modelling focuses on analysing how a socio-technical system might negatively impact users, other
stakeholders or broader society, or otherwise create or re-enforce structures of injustice, threats to human rights, or
disproportionate risks to vulnerable groups globally. The process of harms modelling systematically requires
combining knowledge about a system architecture and its user affordances with historical and contextual evidence
about the impact of similar existing systems on different social groups and participatory consultation with a range of
communities who may be implicated by the system. This combined information frames the ability to anticipate harm
and proactively identify responses.

The Harms Modelling documentation describes the framework and the process carried out to date, followed by the
methodology, an overview of the assessment, an outline for public review and feedback, and due diligence actions
being developed to accompany version 1.0 of these specifications, its implementations and evolution.

18.2.4. Due Diligence Actions

The harms, misuse and abuse assessment has informed, and should continue to inform, the development of the C2PA
technical specifications as well as its accompanying documentation:

• Guidance for implementers

• User experience guidance

• Security Considerations

• Explainer

In addition, the harms, misuse and abuse assessment should inform the governance of the Coalition and guide
potential multilateral cooperation for the promotion of a diverse C2PA ecosystem that pushes for the optimization of
the benefits in terms of trust in media, user control and transparency that prompted the development of the C2PA
specifications.

100

1.0@security:Harms_Modelling.pdf
1.2@guidance:Guidance.pdf
1.0@ux:UX_Recommendations.pdf
1.0@security:Security_Considerations.pdf


Chapter 19. C2PA Standard Assertions

19.1. Introduction
This section of the document lists the standard set of assertions for use by C2PA implementations, describing their
syntax, usage, etc. To keep things simple, all example JUMBF URIs have been shortened for illustrative purposes - full
URIs are necessary in the actual data.

All C2PA standardized assertions use the JSON JUMBF content type, the CBOR JUMBF content type, or the Embedded
File content type from ISO 19566-5:AMD-1. Entity-specific assertions can be any of those, any of the other JUMBF
content types from ISO 19566-5, B.1 (such as XML) or may create its own (as per the instructions in ISO 19566-5, Table
B.1). The Codestream content type shall not be used for a C2PA assertion.

NOTE CBOR is not currently defined in 19566-5, but an upcoming update will define the type as cbor.

Unless otherwise mentioned, all assertions documented in this standard set of assertions shall be serialized as CBOR.
For all assertions of type CBOR, their schemas shall be defined using CDDL. All assertions that are serialized as CBOR
shall comply with the "Core Deterministic Encoding Requirements" of CBOR. For those defined using JSON, their
schemas shall be defined using the latest version of JSON Schema.

All assertions shall have a label as described in Section 6.2, “Labels” and shall be versioned as described in Section
6.3, “Versioning”.

19.2. Actors
An actor object references a particular person or organisation. A valid actor object shall have either:

1. an identifier field containing an identifier, or,

NOTE
Since this field is a URL, it is possible to use various identity schemes such as OpenID, WebID or
ISNI.

2. a credentials or credential field containing at least one hashed_uri to a W3C Verifiable Credential in
the Credential Store that is associated with the actor, or,

NOTE
Most references to a W3C Verifiable Credentials are via a credentials field, the Creative Work
assertion uses a credential field in order to align with the schema.org model of singular
field names.

3. both (in which case, the id field in the credentialSubject W3C Verifiable Credential object should match
the identifier field of the actor).
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19.3. Regions of Interest
In some use cases, a given assertion, such as an Action, may only be relevant to a specific portion of an asset as
opposed to the entire asset. In those cases, it is necessary to have a way to describe that region - whether it be
temporal or spatial or both. A region definition serves that purpose.

19.3.1. Common

The most important part of the region definition is the range field is used to describe either a temporal, a spatial
range, or a combination of the two, for the region.

IMPORTANT
While the specification allows for specifying a combination of temporal and spatial ranges, it
is not defined how a Manifest Consumer will use them. It is expected that the C2PA’s User
Experience Task Force will take this up in the future.

A region may also contain one of more common fields:

name

a free-text string representing a human-readable name for the region which might be used in a user interface.

identifier

a free-text string representing a machine-readable, unique to this assertion, identifier for the region.

type

a value from a controlled vocabulary such as https://cv.iptc.org/newscodes/imageregiontype/ or an entity-specific
value (e.g., com.litware.newType) that represents the type of thing(s) depicted by a region.

role

a value from our controlled vocabulary or an entity-specific value (e.g., com.litware.coolArea) that
represents the role of a region among other regions.

description

a free-text string.

19.3.1.1. Roles

The following are the proposed values for the role field, which represents the "role" of a region among other regions
of the same asset. They were derived from the IPTC ImageRegionRole.

$role-choice /= "c2pa.areaOfInterest",  ; arbitrary area worth identifying
$role-choice /= "c2pa.cropped",         ; this area is all that is left after a crop action
$role-choice /= "c2pa.edited",          ; this area has had edits applied to it
$role-choice /= "c2pa.placed",          ; the area where an ingredient was placed/added
$role-choice /= "c2pa.redacted",        ; something in this area was redacted
$role-choice /= "c2pa.subjectArea",     ; area specific to a subject (human or not)
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19.3.1.2. Ranges

All ranges consist of a type field whose value is either "spatial", "temporal" or "frame". In addition, it shall contain
either a shape (for spatial), time or frame (for temporal) field whose data is an object consisting of the specific
data for that range.

19.3.1.3. Spatial

Spatial ranges are described using a shape object. A shape` can be use to represent a rectangle, a circle or a
polygon. It is modelled on the Region Boundary Structure from the IPTC.

19.3.1.4. Temporal

Temporal ranges are either described using a time object, which represents a range from a starting time to an ending
time or a frame object which defines the starting and ending frames (inclusive). If no start is provided, the range
shall start at the beginning of the asset. If not end is provided, the range shall end at the end of the asset. If neither is
provided, the range shall represent the entire asset.

Times are described using Normal Play Time (npt) as described in RFC 2326, as recommended in the Media
Fragments specification from the W3C.

Frames are represented as a single ordinal numbers, where 0 is the first frame.

NOTE
Frames can be applied to various media types including animation, video and audio. They can also
be used to represent page numbers of a document.

19.3.2. Schema

The schema for this type is defined by the region-map rule in the following CDDL Definition:

$role-choice /= "c2pa.areaOfInterest"  ; arbitrary area worth identifying
$role-choice /= "c2pa.cropped"         ; this area is all that is left after a crop action
$role-choice /= "c2pa.edited"          ; this area has had edits applied to it
$role-choice /= "c2pa.placed"          ; the area where an ingredient was placed/added
$role-choice /= "c2pa.redacted"        ; something in this area was redacted
$role-choice /= "c2pa.subjectArea"     ; area specific to a subject (human or not)

region-map = {
    "region":       [1* $range-map],        ; definition of the range, one or more ranges
    ? "name": tstr .size (1..max-tstr-length),  ; a free-text string representing a human-
readable name for the region which might be used in a user interface.
    ? "identifier": tstr .size (1..max-tstr-length),  ; a free-text string representing a
machine-readable, unique to this assertion, identifier for the region.
    ? "type":   tstr .size (1..max-tstr-length),    ; from a controlled list
    ? "role":   $role-choice,   ; from a controlled list 
    ? "description": tstr .size (1..max-tstr-length),
    ? "metadata": $assertion-metadata-map, ; additional information about the assertion
}

$range-choice /= "spatial"      ; a range identified by physical area
$range-choice /= "temporal"     ; a range identified by a time period
$range-choice /= "frame"        ; a range identified by a series of frames
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range-map = {
    "type":     $range-choice,      ; either "spatial", "temporal" or "frame"
    ? "shape":  $shape-map,         ; description of the shape of a spatial range 
    ? "time":   $time-map,          ; description of the time boundaries of a temporal range
    ? "frame":  $frame-map,         ; description of the frame boundaries of a temporal
range
}

coordinate-map = {
    "x": float,     ; coordinate along the x-axis
    "y": float,     ; coordinate along the y-axis
}

$shape-choice /= "rectangle"    ; a rectangular shape
$shape-choice /= "circle"       ; a circular shape
$shape-choice /= "polygon"      ; a polygonal shape

$unit-choice /= "pixel"     ; units are in pixels
$unit-choice /= "percent"   ; units are in percent of the total size

shape-map = {
    "type":     $shape-choice,          ; either "rectangle", "circle" or "polygon"
    "unit":     $unit-choice,           ; either "pixel" or "percent"
    "origin":   $coordinate-map,        ; starting/origin coordinate of the shape. 
    ? "width":  float,                  ; width for rectangles, diameter for circles
(ignored for polygons)
    ? "height": float                   ; height for rectangles
    ? "inside" : bool,                  ; inside or outside the shape, default is `true`
    ? "vertices":   [1* coordinate-map] ; remaining points/vertices of the polygon
}

$time-choice /= "npt"  ; Normal Play Time

time-map = {
    "type":     $time-choice,
    ? "start":  tstr .regexp "^(?:(?:([01]?\d|2[0-3]):)?([0-5]?\d):)?([0-
5]?\d)(\.(\d{1,9}))?$",    ; start time (or beginning of asset if not present). 
    ? "end":    tstr .regexp "^(?:(?:([01]?\d|2[0-3]):)?([0-5]?\d):)?([0-
5]?\d)(\.(\d{1,9}))?$",    ; end time (or end of asset if not present).
}

frame-map = {
    ? "start":  int, 
    ? "end":    int
}

An example in CBOR Diagnostic Format (.cbordiag) is shown below:

{
  "region": [
    {
      "type": "temporal",
      "time": {
        "type": "npt",
        "start": "0",
        "end": "5.2"
      }
    },
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    {
      "type": "spatial",
      "shape": {
        "type": "rectangle",
        "unit": "pixel",
        "origin": {
          "x": 10.0,
          "y": 10.0
        },
        "width": 200.0,
        "height": 112.0
      }
    }
  ],
  "name": "Animated Logo",
  "identifier": "logo-clip",
  "role": "c2pa.placed",
  "description": "5.2 seconds of the opening animated logo, in a rectangle 10 pixels down
from the top and left, 200px by 112px"
}

19.4. Metadata About Assertions
In many cases, it is useful or even necessary to provide additional information about an assertion, such as the date
and time when it was generated or other data that may help manifest consumers to make informed decisions about
the provenance or veracity of the assertion data.

NOTE
A manifest consumer is not required to read any portion of assertion metadata. It can choose which,
if any, fields it wishes to consume, perhaps even varying based on the assertion type to which it is
applied.

Below shows the core schemas used inside other assertions.

In CDDL it is defined by the assertion-metadata-map rule in the following schema:

;Describes additional information about an assertion, including a hashed-uri reference to
it. We use a socket/plug here to allow hashed-uri-map to be used in individual files without
having the map defined in the same file
$assertion-metadata-map /= {
  ? "dateTime":  tdate, ; The ISO 8601 date-time string when the assertion was
created/generated
  ? "reviewRatings": [1* rating-map], ; Ratings given to the assertion (may be empty)
  ? "reference": $hashed-uri-map, ;hashed_uri reference to another assertion that this
review is about
  ? "dataSource": source-map, ; A description of the source of the assertion data, selected
from a predefined list
  ? "localizations" : [1* localization-data-entry] ; localizations for strings in the
assertion
  ? "regionOfInterest" : $region-map ; describes a region of the asset where this assertion
is relevant
  * $$assertion-metadata-map-extension
}

$source-type /= "signer"
$source-type /= "claimGenerator.REE"
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$source-type /= "claimGenerator.TEE"
$source-type /= "localProvider.REE"
$source-type /= "localProvider.TEE"
$source-type /= "remoteProvider.1stParty"
$source-type /= "remoteProvider.3rdParty"
$source-type /= "humanEntry.anonymous"
$source-type /= "humanEntry.identified"

source-map = {
  "type": $source-type, ; A value from among the enumerated list indicating whether the
source of the assertion is a claim generator running in a rich execution environment (REE),
a claim generator running in a trusted execution environment (TEE), a local data provider in
REE (e.g. the location API from a mobile operating system), a local data running in a TEE
(e.g. a trusted location trusted app from a chipset vendor), a remote data provider such as
a server (e.g. Google's geolocation API service), entry by a human who wishes to remain
anonymous, or a human who is credentialed with a W3C Verifiable Credential that's included
in the asset.
  ? "details": tstr .size (1..max-tstr-length), ; A human readable string giving details
about the source of the assertion data, e.g. the URL of the remote server that provided the
data
  ? "actors" : [1* actor-map] ; array of hashed_uri references to W3C Verifiable Credentials
}

actor-map = {
  ? "identifier": tstr .size (1..max-tstr-length), ; An identifier for a human actor, used
when the "type" is humanEntry.identified
  ? "credentials" : [1* $hashed-uri-map / $hashed-ext-uri-map] ; array of hashed_uri
references to W3C Verifiable Credentials
}

int-range = 1..5

$review-code /= "actions.unknownActionsPerformed"
$review-code /= "actions.missing"
$review-code /= "actions.possiblyMissing"
$review-code /= "depthMap.sceneMismatch"
$review-code /= "ingredient.modified"
$review-code /= "ingredient.possiblyModified"
$review-code /= "thumbnail.primaryMismatch"
$review-code /= "stds.iptc.location.inaccurate"
$review-code /= "stds.schema-org.CreativeWork.misattributed"
$review-code /= "stds.schema-org.CreativeWork.missingAttribution"

rating-map = {
  "value":  int-range, ; "A value from 1 (worst) to 5 (best) of the rating of the item"
  ? "code": $review-code, ; A label-formatted string that describes the reason for the
rating
  ? "explanation": tstr .size (1..max-tstr-length), ; A human readable string explaining why
the rating is what it is
}

; The data structures used to store localization dictionaries
$localization-data-entry /= {
  * $$language-string
}

language-string /= tstr .size (1..max-tstr-length)

In JSON Schema:
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{
  "$schema": "https://json-schema.org/draft/2020-12/schema",
  "$id": "http://ns.c2pa.org/assertion-metadata/v1",
  "type": "object",
  "description": "Assertion that describes additional information about an assertion,
including a hashed-uri reference to it",
  "examples": [
    {
      "dataSource": {
        "type": "localProvider.REE",
        "details": "Dilip's Photo Editor for Windows v5.6"
      },
      "reviewRatings": [
        {
          "value": 2,
          "code" : "actions.unknownActionsPerformed",
          "explanation": "A 3rd party filter was used."
        }
      ],
      "dateTime": "2021-06-28T16:34:11.457Z"
    },
    {
      "reference": {
        "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.assertions/stds.schema-org.CreativeWork",
        "alg": "sha256",
        "hash": "hoOspQQ1lFTy/4Tp8Epx670E5QW5NwkNR+2b30KFXug="
      },
      "reviewRatings": [
        {
          "value": 1,
          "code": "stds.schema-org.CreativeWork.missingAttribution",
          "explanation": "Producer Thomas Chu was not credited."
        },
        {
          "value": 1,
          "code": "stds.schema-org.CreativeWork.misattributed",
          "explanation": "Editor of asset is Aswhini Viswanathan, not Stacey Higgs."
        }
      ],
      "localizations": [
        {
          "copyrightHolder.legalName": {
            "en-US": "Example Corporation",
            "en-GB": "Example Corporation",
            "es": "Ejemplo de una empresa",
            "fr": "Exemple d'entreprise",
            "jp": "例の会社"
          }
        }
      ]
    }
  ],
  "$defs": {
    "ACTOR": {
      "type": "object",
      "properties": {
        "credentials": {
          "type": "array",
          "description": "An array of hashed uris to W3C Verifiable Credentials",
          "minItems": 1,
          "items": {

107



            "oneOf": [
              {
                "$ref": "http://ns.c2pa.org/hashed-uri/v1"
              },
              {
                "$ref": "http://ns.c2pa.org/hashed-ext-uri/v1"
              }
            ],
            "description": "hashed-uri reference to a W3C Verifiable Credential (VC)
associated with the person or organization who entered the assertion content."
          }
        }
      },
      "identifier": {
        "type": "string",
        "description": "An identifier for a human actor, used when the 'type' is
humanEntry.identified",
        "minLength": 1
      },
      "required": ["credentials"],
      "additionalProperties": false
    },
    "DATASOURCE": {
      "type": "object",
      "properties": {
        "type": {
          "enum": [
            "signer",
            "claimGenerator.REE",
            "claimGenerator.TEE",
            "localProvider.REE",
            "localProvider.TEE",
            "remoteProvider.1stParty",
            "remoteProvider.3rdParty",
            "humanEntry.anonymous",
            "humanEntry.identified`"
          ],
          "description": "A value from among the enumerated list indicating whether the
source of the assertion is a claim generator running in a rich execution environment (REE),
a claim generator running in a trusted execution environment (TEE), a local data provider in
REE (e.g. the location API from a mobile operating system), a local data running in a TEE
(e.g. a trusted location trusted app from a chipset vendor), a remote data provider such as
a server (e.g. Google's geolocation API service), entry by a human who wishes to remain
anonymous, or a human who is credentialed with a W3C Verifiable Credential that's included
in the asset."
        },
        "details": {
          "type": "string",
          "description": "A human readable string giving details about the source of the
assertion data, e.g. the URL of the remote server that provided the data"
        },
        "actors": {
          "type": "array",
          "description": "An array of the actors that undertook this action.",
          "minItems": 1,
          "items": {
            "type": "string",
            "minLength": 1,
            "$ref": "#/$defs/ACTOR",
            "description": "list of actors"
          }
        }
      },
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      "anyOf": [
        {
          "not": {
            "properties": {
              "type": {
                "const": "humanEntry.credentialed"
              }
            },
            "required": ["type"]
          }
        },
        {
          "required": ["actors"]
        }
      ],
      "required": ["type"],
      "additionalProperties": false
    },
    "RATING": {
      "type": "object",
      "properties": {
        "value": {
          "type": "integer",
          "minimum": 1,
          "maximum": 5,
          "description": "A value from 1 (worst) to 5 (best) of the rating of the item"
        },
        "code": {
          "enum": [
            "actions.unknownActionsPerformed",
            "actions.missing",
            "actions.possiblyMissing",
            "depthMap.sceneMismatch",
            "ingredient.modified",
            "ingredient.possiblyModified",
            "thumbnail.primaryMismatch",
            "stds.iptc.location.inaccurate",
            "stds.schema-org.CreativeWork.misattributed",
            "stds.schema-org.CreativeWork.missingAttribution"
          ],
          "description": "A label-formatted string that describes the reason for the rating"
        },
        "explanation": {
          "type": "string",
          "minLength": 1,
          "description": "A human readable string explaining why the rating is what it is"
        }
      },
      "required": ["value"]
    },
    "LOCALIZATION_ENTRY": {
      "type": "object",
      "properties": {
        "^..[-A-Za-z]*$": {
          "type": "string",
          "description": "String for the value as describe by the BCP-47 code as the key",
          "minLength": 1
          }
      },
      "required": [],
      "additionalProperties": true
    }
  },
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  "properties": {
    "dataSource": {
      "$ref": "#/$defs/DATASOURCE",
      "description": "A description of the source of the assertion data, selected from a
predefined list"
    },
    "reviewRatings": {
      "type": "array",
      "description": "An array of review ratings",
      "minItems": 1,
      "items": {
        "$ref": "#/$defs/RATING",
        "description": "The rating given to the assertion"
      }
    },
    "dateTime": {
      "type": "string",
      "minLength": 1,
      "format": "date-time",
      "description": "The ISO 8601 date-time string when the assertion was
created/generated"
    },
    "reference": {
      "$ref": "http://ns.c2pa.org/hashed-uri/v1",
      "description": "hashed_uri reference to another assertion that this review is about"
    },
    "localizations" : {
      "type": "array",
      "description": "An array of localizations",
      "minItems": 1,
      "items": {
        "$ref": "#/$defs/LOCALIZATION_ENTRY",
        "description": "The localization entries for a single string"
      }
    }
  },
  "required": [],
  "additionalProperties": true
}

In most cases, this assertion specific metadata will appear directly inside of other assertions (e.g., ingredients) as the
value of their metadata field. However, sometimes it is necessary or desirable to store the assertion metadata in a
separate, independent assertion metadata assertion, such as when an assertion is not in JSON or CBOR, such
as thumbnails.

NOTE Since the claim is a special type of assertion, it too supports having assertion metadata.

The label for the assertion metadata assertion is c2pa.assertion.metadata.

19.4.1. Data Source

This dataSource field is an optional field that allows the claim signer to inform downstream manifest consumers
about the source from which the assertion contents originated. If no dataSource is provided for a given assertion,
the dataSource is considered to be the Signer.

NOTE By default, all assertions are sourced to the Signer, as the Trust Model is rooted in trust of the Signer.
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Where a different source is indicated, it will be a useful Trust Signal to a manifest consumer.

The value of the field is a dataSource object that is composed of three fields: type, details, and if applicable,
credential.

The dataSource type field defines the type of the dataSource. It is assembled with labels in the format described in
Section 6.2, “Labels”. The value can be one of the following specification-defined values, or entity-specific labels can
be used as an extension mechanism.

Value of type Meaning

signer The assertion contents came from the Signer

claimGenerator.REE Assertion contents came from a claim generator running in a rich execution environment
(REE), such as a desktop or mobile operating system

claimGenerator.TEE Assertion contents came from a claim generator running in a trusted execution
environment (TEE), such as a trusted OS

localProvider.REE Assertion contents came from a data source running in an REE on the same physical
computing device as the claim generator

localProvider.TEE Assertion contents came from a data source running in a TEE on the same physical
computing device as the claim generator

remoteProvider Assertion contents came from a remote data source controlled by the signer or claim
generator vendor

remoteProvider.ext
ernal

Assertion contents came from an external, remote data source that is not the signer or
claim generator vendor

humanEntry.anonymo
us

Assertion contents were entered by a human that wishes to remain anonymous

humanEntry.identif
ied

Assertion contents were entered by an identified human actor(s), specified in the
actors field of the dataSource.

The details field is a human-readable string that provides additional information about the dataSource, e.g., the
name of the API used to provide the assertion contents, or the URL of the server from which the contents were
provided. For example, a broad location assertion source may have a type value of remoteProvider.3rdParty,
with the details value set to www.googleapis.com/geolocation/v1/geolocate.

If the value of the type field is humanEntry.identified, then an actors field shall contain an array of one or
more actor objects as defined in [_common_data_model_actor].

19.4.2. Review Ratings

When present, the reviewRatings array provides a place for the claim generator to provide one or more rating
objects on the quality (or lack thereof) of an assertion. A reviewRatings shall not be present if a dataSource
object is present with a type field whose value is either humanEntry.anonymous or
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humanEntry.credentialed.

The value field of the rating object shall be present with any integer value from 1 (worst) through 5 (best). If
present, the explanation field shall contain a human-consumable string description of the type of rating. In
addition, an optional machine-readable code field which defines assertion-specific evaluation outcome codes may
be provided. The value of the code field is assembled with labels in the format described in Section 6.2, “Labels”. The
value can be one of the following specification-defined values, or entity-specific labels can be used as an extension
mechanism.

Value of code Applicable Assertion Meaning

actions.unknownAc
tionsPerformed

c2pa.actions The actions assertion does not contain a full list of all actions
performed in the authoring tool (e.g., because of the use of a 3rd
party filter whose effect is unknown to the authoring tool).

actions.placedIng
redientNotFound

c2pa.actions The actions assertion being reviewed has a placed action
without a resolvable ingredient URI. value should be 1.

ingredient.action
Missing

c2pa.ingredient The ingredient assertion being reviewed does not have at
least one action that references it in its claim. value should be
1.

ingredient.notVis
ible

c2pa.ingredient The ingredient assertion being reviewed is not visible in the
digital content bound to that manifest. value should be 1.

depthMap.sceneMis
match

c2pa.depthmap.GDe
pth

The contents of the depth map assertion do not correspond to
the scene portrayed in the primary presentation in the asset
(e.g., because of a picture-of-picture attack).

thumbnail.primary
Mismatch

c2pa.thumbnail.cl
aim

The thumbnail’s contents do not match the contents of the
primary presentation in the asset.

stds.schema-
org.CreativeWork.
misattributed

stds.schema-
org.CreativeWork

One or more of the roles listed in a CreativeWork assertion is
misattributed to the wrong actor (e.g., the wrong credit is given
for the editor role).

stds.schema-
org.CreativeWork.
missingAttributio
n

stds.schema-
org.CreativeWork

An attribution for a role in a CreativeWork assertion is
missing (e.g., a person who played the role of producer is not
credited).

stds.iptc.locatio
n.inaccurate

stds.iptc The reported location is inaccurate (e.g., reported to be in New
York, NY but appears to be in another city entirely).

19.4.3. References

Because the reference field of the assertion metadata assertion is a standard hashed_uri, it is also
possible to have an assertion metadata assertion refer to assertions in other manifests than the active one. For
example, the active manifest could include an assertion metadata assertion that validates the precise
location assertion present in an ingredient’s manifest.
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NOTE
Since the claim is a special type of assertion, this same method can be used to refer to claims in other
manifests.

19.4.4. DateTime

If a dateTime field is present, its value shall be a date time string that complies with ISO 8601.

19.4.5. Region of Interest

The assertion may be specific to only a portion of an asset - such as a range of frames in a video or a specific area on
an image. Such a portion may be identified using a regionOfInterest field, whose value is a region-map.

19.4.6. Localization

It is important that consumers of C2PA manifests be able to understand the information in their native language,
when possible. To this end, it is possible to add localization information for an assertion with a dictionary that is
included in the assertion’s metadata.

19.4.6.1. Localization Dictionary

A localization dictionary consists of a single object, where each of its keys represent the translations using the
language indexing technique. If the value that requires translation is not associated with a top-level key, then "dot
notation" (.) shall be used to reference keys nested in objects. An array indexing notation ([n], n>=0) shall be used
where a specific element in an array needs to be traversed. When the value requiring translation is itself an array, a
specific element may be referenced. Some examples would be:

{
  "dc:title": {
    "en-US": "Kevin's Five Cats",
    "en-GB": "Lord Kevin's Five Cats",
    "es-MX": "Los Cinco Gatos de Kevin",
    "es-ES": "Los Thinco Gatos de Kevin",
    "fr": "Les Cinq Chats de Kevin",
    "jp": "ケヴィンの５匹の猫"
  }
}

{
  "copyrightHolder.legalName": {
    "en-US": "Example Corporation",
    "en-GB": "Example Corporation",
    "es": "Ejemplo de una empresa",
    "fr": "Exemple d'entreprise",
    "jp": "例の会社"
  }
}

{
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  "authors[2].name": {
    "en-US": "John Doe",
    "en-GB": "Joe Bloggs"
  },
  "authors[2].aliases[0]": {
    "en-US": "John Smith",
    "en-GB": "Fred Bloggs"
  },
  "authors[2].aliases[1]": {
    "en-US": "John Q. Public",
    "en-GB": "Joe Public"
  }
}

Any such 3rd party keys or values are required to be namespaced in the same way as Section 6.2, “Labels”, e.g.
com.litware. In order for a manifest consumer to display human-readable information about these keys and
values, the claim generator should provide the strings via this localization approach.

The following example shows how this could be used for localizing custom actions, by using this in the assertion
metadata of a c2pa.actions assertion.

{
  "com.litware.blur": {
    "en-US": "Blur",
    "fr-FR": "Brouiller",
  },
  "com.litware.filter": {
    "en-US": "Filter",
    "es-ES": "Filtrar",
    "jp-JP": "フィルター"
  }
}

19.5. Standard C2PA Assertion Summary
The standard C2PA assertions are:

Type Assertion Schema Serialization

Assertion Metadata c2pa.assertion.metad
ata

C2PA CBOR

Asset Reference c2pa.asset-ref C2PA CBOR

Data Hash c2pa.hash.data C2PA CBOR

BMFF-based Hash v1
(deprecated)

c2pa.hash.bmff C2PA CBOR

BMFF-based Hash v2 c2pa.hash.bmff.v2 C2PA CBOR

General Box Hash c2pa.hash.boxes C2PA CBOR
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Type Assertion Schema Serialization

Soft Binding c2pa.soft-binding C2PA CBOR

Cloud Data c2pa.cloud-data C2PA CBOR

Thumbnail c2pa.thumbnail.claim
(claim creation time)
c2pa.thumbnail.ingre
dient (importing an
ingredient)

C2PA Embedded File

Actions c2pa.actions C2PA CBOR

Ingredient c2pa.ingredient C2PA CBOR

GDepth Depthmap c2pa.depthmap.GDep
th

https://developers.go
ogle.com/depthmap-
metadata/reference

CBOR

Endorsement c2pa.endorsement C2PA CBOR

Exif information stds.exif C2PA JSON-LD

IPTC Photo and Video
Metadata

stds.iptc C2PA JSON-LD

Claim Review stds.schema-
org.ClaimReview

Schema.org
ClaimReview

JSON-LD

Creative Work stds.schema-
org.CreativeWork

Schema.org
CreativeWork

JSON-LD

19.6. Data Hash
The most common way to uniquely verify the integrity of portions of a non-BMFF-based asset is via the hard bindings
(i.e., cryptographic hash) present in data hash assertions. However, for those formats are "box like" but not
compatible with BMFF, the General Box Hash assertion is recommended.

The data hash assertion supports the creation and storage of hashes as described in Section 14.1, “Hashing”, and the
value shall be present in the hash field.

Each data hash assertion defines a specified range of bytes over which the hash has been computed. If only a portion
of the asset shall be hashed, then the range(s) to be excluded shall be present in the array value of the exclusions
field.

A previous version of this specification provided a url field to provide a pointer to where the hashed data can be
located, but it was never used. This field is now deprecated in favor of the Asset Reference Assertion. Claim generators
shall not add this field to a data hash assertion, and consumers shall ignore the field when present, except this shall
not affect inclusion of the field as part of the content being validated as described in Section 16.7.3, “Assertion
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Validation”.

A Data Hash assertion shall have a label of c2pa.hash.data.

A Data Hash assertion must not appear in a Cloud Data assertion.

19.6.1. Schema and Example

The schema for this type is defined by the data-hash-map rule in the following CDDL Definition:

; Also check optionality within the hash-map
; The data structure used to store the cryptographic hash of some or all of the asset's data

; and additional information required to compute the hash.
data-hash-map = {
  ? "exclusions": [1* EXCLUSION_RANGE-map],
  ? "alg":tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute the hash in this assertion, taken from the C2PA hash algorithm
identifier list. If this field is absent, the hash algorithm is taken the `alg` value of the
enclosing structure. If both are present, the field in this structure is used. If no value
is present in any of these places, this structure is invalid; there is no default.
  "hash": bstr, ; byte string of the hash value
  "pad": bstr, ; zero-filled byte string used for filling up space
  ? "pad2": bstr, ; optional zero-filled byte string used for filling up space
  ? "name": tstr .size (1..max-tstr-length), ; (optional) a human-readable description of
what this hash cover
  ? "url": uri, ; Unused and deprecated. Claim generators shall not add this field and
consumers shall ignore it if present.
}

EXCLUSION_RANGE-map = {
  "start": int, ; Starting byte of the range
  "length": int, ; Number of bytes of data to exclude
}

An example in CBOR Diagnostic Format (.cbordiag) is shown below:

{
  "alg" : "sha256",
  "pad" : 'abc',
  "hash": 'Auxjtmax46cC2N3Y9aFmBO9Jfay8LEwJWzBUtZ0sUM8gA=',
  "name": "JUMBF manifest"
  "exclusions": [ 
    {
      "start": 9960,
      "length": 4213
    } 
  ],
}

Normally, the start and length values of an exclusion shall be written in their preferred serialization (i.e., "as
short as possible"). However, when a data hash assertion needs to be created but the start and length values are
not yet known, they shall be created "as large as possible", which would be as a 32-bit integer.
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The pad value shall always be present but shall be a zero-filled byte string of length 0 unless used to replace (i.e.,
"pad") bytes during multiple pass processing. pad2 is an optional zero-filled byte string that is used if the desired
padding cannot be achieved with pad.

NOTE
Section 11.4, “Multiple Step Processing” describes how to fill in the correct values and adjust the
padding.

19.6.2. Special consideration for JPEG-1

When hashing a JPEG-1 (.jpg) file into which the C2PA Manifest will be embedded, the APP11 marker (FFEB) and the
segment’s length (Lp) of all APP11 segments containing the JUMBF data shall be included in the exclusion range.

NOTE
All the APP11 segments containing the C2PA Manifest JUMBF are contiguous so that only a single
range is required.

19.6.3. Special consideration for PNG

When hashing a PNG (.png) file into which the C2PA Manifest will be embedded, it is important that the Length and
the 'caBX' (representing the chunk type) of the chunk containing the JUMBF data be included in the exclusion
range.

19.7. BMFF-Based Hash
Portion(s) of a BMFF-based asset that a claim generator wishes to uniquely identify with a hard binding (i.e.,
cryptographic hash) shall be described using BMFF-based Hash assertions.

A BMFF-based Hash assertion shall have a label of c2pa.hash.bmff for v1 (deprecated) and
c2pa.hash.bmff.v2 for v2. Claim generators shall not create c2pa.hash.bmff (v1) assertions in new
manifests.

IMPORTANT

Due to a potential security risk, validators and consumers may choose to not validate content
authenticated by a v1 version of this assertion. If a validator or consumer chooses not to
validate content authenticated by a v1 version of this assertion, it shall report the content as
unauthenticated, as if no manifest were present.

NOTE
A future version of this specification will prohibit validating content authenticated by a v1 version of
this assertion.

A BMFF-based Hash assertion must not appear in a Cloud Data assertion.

A previous version of this specification provided a url field to provide a pointer to where the hashed data can be
located, but it was never used. This field is now deprecated in favor of the Asset Reference Assertion. Claim generators
shall not add this field to a BMFF hash assertion, and consumers shall ignore the field when present, except this shall
not affect inclusion of the field as part of the content being validated as described in Section 16.7.3, “Assertion
Validation”.
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To compute the hash specified in the value field of a BMFF hash, all bytes of the file are added to the hash excluding
those BMFF boxes or subset[s] thereof which match any exclusion entry in the exclusions array.

Boxes that are included in their entirety also include their box headers in the input data contributed to the hash.
Similarly, boxes that are excluded in their entirety also exclude their box headers from the input data contributed to
the hash. When a box is partially excluded from the input data contributed to the hash through the use of a subset
field in the exclusion specification, the portion(s) of the box to be excluded defined by the relative byte offsets in the
subset field are offsets from the start of the box including the box headers, not offsets from the start of the box’s
content.

In BMFF-based hash v1, for any root box not excluded in its entirety, the input data contributed to the hash for that
box is comprised of data, where data is defined as the box’s contents, including headers, minus any exclusions.

In BMFF-based hash v2, for any root box not excluded in its entirety, the input data contributed to the hash for that
box is comprised of the concatenation of the binary strings offset || data, where offset is defined as the
absolute file offset of the box as an 8-byte integer in big-endian format, and data is defined as the box’s contents,
including headers, minus any exclusions. In this definition, "||" represents the binary concatenation of the two. The
offset shall not be included for Merkle tree hashes when the bmff-hash-map includes both the hash and merkle
fields.

There are two differences between BMFF-based hash v1 and v2.

• The absolute file byte offset is included at the start of the input data contributed to the hash for any root box. This
ensures that a root box included in the hash cannot change positions in the file.

• The mdat box is no longer excluded in its entirety when the bmff-hash-map includes both the hash and merkle
fields. Instead, a mandatory entry on the exclusion list excludes most of the box. Along with the first difference,
this ensures that the mdat cannot change positions in the file and also eliminates the need for the first difference
to include the offset for each individual Merkle tree hash when the bmff-hash-map includes both the hash and
merkle fields.

A box matches an exclusion entry in the exclusions array if and only if all of the following conditions are met.

• The box’s location in the file exactly matches the exclusions-map entry’s xpath field.

• If length is specified in the exclusions-map entry, the box’s length exactly matches the exclusions-map
entry’s length field. Note: The length includes the box headers.

• If version is specified in the exclusions-map entry, the box is a FullBox and the box’s version exactly
matches the exclusions-map entry’s version field.

• If flags (byte array of exactly 3 bytes) is specified in the exclusions-map entry and the box is a FullBox. If
exact is set to true or not specified, the box’s flags (bit(24), i.e., 3 bytes) also exactly matches the exclusions-
map entry’s flags field. If exact is set to false, the bitwise-and of the box’s flags (bit(24), i.e., 3 bytes) with the
exclusions-map entry’s flags field exactly matches the exclusions-map entry’s flags field (i.e., the
box has at least those bits set but may also have additional bits set).

• If data (array of objects) is specified in the exclusions-map entry, then for each item in the array, the box’s
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binary data at that item’s relative byte offset field exactly matches that item’s bytes field.

The xpath field’s string syntax shall be limited to the following strict subset.

• Only abbreviated syntax shall be used.

• Only full paths shall be used.

• Only node selection via node or node[integer] shall be used.

• Descendent syntax, i.e., //, shall NOT be used.

• All nodes shall be BMFF 4cc codes.

Complete Syntax:

  xpath = '/' nodes
  nodes = node
        | node '/' nodes
  node = box4cc
       | box4cc '[' integer ']'
Where:
  box4cc is any 4cc allowed by ISO/IEC 14496-12 for a BMFF box.
  integer is any non-zero positive integer with no leading zeros.

NOTE
Any given exclusion entry may match zero or more boxes. It is not required that an exclusion entry
match exactly one box.

A non-leaf xpath node shall only point to a container box that has no fields of its own (i.e., contains no data, only child
boxes) and that does not inherit from FullBox. This ensures that a C2PA validator does not need to be aware of the
syntax and semantics of unusual boxes that contain other boxes. If a child box of such an unusual box needs to be
excluded in full or in part, the exclusions-map entry’s xpath field shall point to the unusual box itself and the
subset-map field shall exclude the byte rang(es) containing the excluded child box data. For example, the 'sgpd'
box contains other boxes but is unusual in that it inherits from FullBox; as such, if excluding child box(es), in whole or
in part, from 'sgpd' is required, the assertion shall use an xpath field pointing to the 'sgpd' itself (e.g.,
/moof/traf/sgpd) and shall use the subset-map field to exclude the desired bytes.

If the C2PA Manifest is embedded into the file, the box containing it shall be one of the entries in the exclusions array.
Refer to Section 12.3.2, “Embedding manifests into BMFF-based assets” for more information.

If a non-root excluded box is removed after the C2PA Manifest is created, it shall be replaced with a 'free' box of
the same size to ensure that the input data contributed to the hash for other boxes are not invalidated. If it is expected
that a non-root excluded box may be added after the C2PA Manifest is created, then, at manifest creation time, a
'free' box shall be inserted with sufficient space for the excluded box and that 'free' box shall also be excluded
by an exclusion entry using its full xpath. When the excluded box is added, the 'free' box shall be shrunk (or
removed) to make space for the added box.

Embedding C2PA data into a BMFF-based asset via MP4 boxes changes file offsets in other MP4 boxes and, in v2, the
absolute file byte offsets being included in the input data contributed to the hash for any root box. Those boxes and
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offsets must be included in the input data contributed to the hash with their post-embed values, not their pre-embed
values, or the BMFF-based Hash assertion will not validate.

NOTE

Here are two possible ways an implementation can ensure that post-embed values for all file byte
offsets are hashed.

1. Use 'free' boxes.

a. Determine reasonable maximum size(s) for the C2PA box(es) which will be embedded. All
MP4 boxes for C2PA support unused padding bytes at the end, so it is fine to overestimate
the size for the 'free' boxes because any extra bytes will be ignored.

b. Insert 'free' box(es) of said size(s) into the asset file(s) and update all offsets
appropriately.

c. Perform hashing of the asset with "/free" on the exclusion list.

d. Create and sign the manifest. Create the C2PA box(es).

e. Overwrite the 'free' box(es) with the C2PA box(es).

2. Use a two-pass approach.

a. Compute the exact sizes of the BMFF-based Hash assertion and the merkle box(es) if any.
The latter will require parsing the asset file(s) to determine the size of the Merkle tree.

b. Compute the exact size of the final manifest.

c. Perform hashing of the asset file(s). Update any box that includes any file offsets to correct
values before including that box in the input data contributed to the hash. In v2, compute
the input data contributed to the hash using (offset || data) using the updated
absolute file offset as described above. As indicated above, the offset is not included in the
data contributed for Merkle tree hashes when the bmff-hash-map includes both the hash
and merkle fields.

d. Create and sign the manifest. Create the C2PA box(es).

e. Insert the C2PA box(es).

While the latter method is significantly more complex, it does enable correct hashing without any
foreknowledge of the maximum manifest size. It also minimizes the final asset’s size. Common boxes
(not exhaustive) with file offsets include 'iloc', 'stco', 'co64', 'tfhd', 'sidx', and
'saio'.

19.7.1. Schema and Example

The schema for both c2pa.hash.bmff and c2pa.hash.bmff.v2 are defined by the bmff-hash-map rule in
the following CDDL Definition:

bmff-hash-map = {
  "exclusions": [1* exclusions-map],
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  ? "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute this hash, taken from the C2PA hash algorithm identifier list. If
this field is absent, the hash algorithm is taken from an enclosing structure as defined by
that structure. If both are present, the field in this structure is used. If no value is
present in any of these places, this structure is invalid; there is no default.
  ? "hash": bstr, ; For non-fragmented MP4, this shall be the hash of the entire BMFF file
excluding boxes listed in the exclusions array.  For `c2pa.hash.bmff` (deprecated)
assertions, if the merkle field is present, this hash also excludes all 'mdat' boxes.  For
fragmented MP4, this field is required to be absent.
  ? "merkle": [1* merkle-map], ; A set of Merkle tree rows and the associated data required
to enable verification of a single 'mdat' box, multiple 'mdat' boxes, and/or individual
fragment files within the asset.
  ? "name": tstr .size (1..max-tstr-length), ; optional) a human-readable description of
what this hash covers.
  ? "url": uri, ; Unused and deprecated. Claim generators shall not add this field and
consumers shall ignore it if present.
}

;(optional) CBOR byte string of exactly 3 bytes.
flag-type = bytes

flag-t = flag-type .eq 3

exclusions-map = {
  "xpath": tstr, ; Location of box(es) to exclude from the hash starting from the root node
as an xpath formatted string of version https://www.w3.org/TR/xpath-10/ with highly
constrained syntax.
  ? "length": int, ; (optional) Length that a leafmost box must have to exclude from the
hash.
  ? "data": [1* data-map], ; (optional) The data in the leafmost box at the specified
relative byte offset must be identical to the specified data for the box to be excluded from
the hash.
  ? "subset":[1* subset-map], ; (optional) Only this portion of the excluded box shall be
excluded from the hash.  Each entry in the array must have a monotonically increasing
relative byte offset.  No subset within the array may overlap.  The last entry may have a
length of zero; this indicates that the remainder of the box from that relative byte offset
onward is excluded.  A relative byte offset or relative byte offset plus length that exceeds
the length of the box is allowed; bytes beyond the end of the box are never hashed.
  ? "version": int, ; (optional) Version that must be set in a leafmost box for the box to
be excluded from the hash.  Shall only be specified for a box that inherits from FullBox.
  ? "flags": flag-t,  ; (optional) byte string of exactly 3 bytes.  The 24-bit flags that
must be set in a leafmost box for the box to be excluded from the hash.  Shall only be
specified for a box that inherits from FullBox.
  ? "exact": bool, ; (optional) indicates that flags must be an exact match.  If not
specified, defaults to true.  Shall only be specified for a box that inherits from FullBox
and when flags is also specified.
}

data-map = {
  "offset": int,
  "value" : bstr,
}
subset-map = {
  "offset": int,
  "length": int,
}

; Each entry in a map is a Merkle tree rows and the associated data required to enable
validation of a single
; 'mdat' box or multiple 'mdat' boxes within the asset.",
merkle-map = {
  "uniqueId": int, ; 1-based unique id used to differentiate across files to determine which
Merkle tree should be used to validate a given 'mdat' box.
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  "localId": int, ; Local id used to differentiate across multiple 'mdat' boxes within a
single file to determine which Merkle tree should be used to validate that 'mdat' box.
  "count": int, ; Number of leaf nodes in the Merkle tree.  Null nodes are not included in
this count.
  ? "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute the hashes in this Merkle tree, taken from the C2PA hash algorithm
identifier list. If this field is absent, the hash algorithm is taken the `alg` value of the
enclosing structure as defined by that structure. If both are present, the field in this
structure is used. If no value is present in any of these places, this structure is invalid;
there is no default.
  ? "initHash": bstr, ; For fragmented MP4 assets which are split across multiple files,
this field is required to be present and shall be the hash of the entire initialization
segment file for chunks hashed by this Merkle tree excluding boxes listed in the exclusions
array.  For fragmented MP4 assets which are stored as a single flat MP4 file, this field is
required to be present and shall be the hash of all bytes preceding the first 'moof' box
excluding boxes listed in the exclusions array.  For non-fragmented MP4, this field is
required to be absent.
  "hashes": [1* bstr], ; An ordered array representing a single row of the Merkle tree which
may be the leaf-most row, root row, or any intermediate row.  The depth of the row is
implied by (shall be computed from) the number of items in this array.
}

An example in CBOR Diagnostic Format (.cbordiag) for a monolithic MP4 file asset where the mdat box is validated
as a unit is shown below:

{
  "hash": b64'EiAuxjtmax46cC2N3Y9aFmBO9Jfay8LEwJWzBUtZ0sUM8gA=',
  "name": "Example BMFF-hash object",
  "exclusions": [
    {
      "data": [
        {
          "value": b64'2P7D1hsOSDySl1goh37EgQ==',
          "offset": 8
        }
      ],
      "xpath": "/uuid"
    },
    {
      "xpath": "/ftyp"
    },
    {
      "xpath": "/mfra"
    },
    {
      "xpath": "/moov[1]/pssh"
    },
    {
      "xpath": "/emsg",
      "data": [
        {
          "value": b64'r3avWCpXHkmKHATFsV0Q5g==',
          "offset": 20
        }
      ]
    }
  ]
}
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An example in CBOR Diagnostic Format (.cbordiag) for an asset composed of fragmented MP4 files is shown below:

{
  "alg": "sha256",
  "name": "Example BMFF-hash object for fMP4",
  "merkle": [
    {
      "count": 23,
      "hashes": [ b64'HvWZOxKMfkSatRAygs8DJfnEEcN/G1BNi359NdIDxbQ=', b64'HvWZOxKMfkSatRAygs
8DJfnEEcN/G1BNi359NdIDxbQ=' ],
      "localId": 19,
      "initHash": b64'Hf0IgeqbL0m+FTTLpUWwsDGR8pvhUR1AlwvaXjQ0qGY=',
      "uniqueId": 17
    },
    {
      "count": 69,
      "hashes": [ b64'9Zk7Eox+RJq1EDKCzwMl+cQRw38bUE2Lfn010gPFtB0=', b64'9Zk7Eox+RJq
1EDKCzwMl+cQRw38bUE2Lfn010gPFtB0=', b64'mTsSjH5EmrUQMoLPAyX5xBHDfxtQTYt+fTXSA8W0Hf0=', b
64'mTsSjH5EmrUQMoLPAyX5xBHDfxtQTYt+fTXSA8W0Hf0=', b64'OxKMfkSatRAygs8DJfnEEcN/G1BNi
359NdIDxbQd/Qg=' ],
      "localId": 38,
      "initHash": b64'Hf0IgeqbL0m+FTTLpUWwsDGR8pvhUR1AlwvaXjQ0qGY=',
      "uniqueId": 34
    },
    {
      "count": 46,
      "hashes": [ b64'OxKMfkSatRAygs8DJfnEEcN/G1BNi359NdIDxbQd/Qg=' ],
      "localId": 57,
      "initHash": b64'Hf0IgeqbL0m+FTTLpUWwsDGR8pvhUR1AlwvaXjQ0qGY=',
      "uniqueId": 51
    }
  ],
  "exclusions": [
    {
      "data": [
        {
          "value": b64'2P7D1hsOSDySl1goh37EgQ==',
          "offset": 8
        }
      ],
      "xpath": "/uuid"
    },
    {
      "xpath": "/ftyp"
    },
    {
      "xpath": "/mfra"
    },
    {
      "xpath": "/moov[1]/pssh"
    },
    {
      "data": [
        {
          "value": b64'9Q==',
          "offset": 5
        },
        {
          "value": b64'UAJXD79SlkG9rfnmcsqTUA==',
          "offset": 20
        },
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        {
          "value": b64'OxKM',
          "offset": 70
        }
      ],
      "flags": b64'ZDNx',
      "xpath": "/emsg",
      "length": 200,
      "subset": [
        {
          "length": 7,
          "offset": 5
        },
        {
          "length": 28,
          "offset": 20
        },
        {
          "length": 63,
          "offset": 45
        },
        {
          "length": 112,
          "offset": 80
        }
      ],
      "version": 1
    }
  ]
}

A pseudo-code implementation of this algorithm follows.

offset = 0
While (offset < length of file)
    Starting at offset, locate the first byte of the first box that matches any entry in the
exclusions array, call this first_excluded_byte
        If no such box is found, set first_excluded_byte = length of file
    Determine the length of that box, call this excluded_byte_count
        If no such box was found, set excluded_byte_count = 0
    To the hash, add all bytes between offset and first_excluded_byte minus one (inclusive)
    If first_excluded_byte < length of file and there exists a subset array within the
exclusion that determined the value of first_excluded_byte
        set next_included_begin = first_excluded_byte
        For each entry in the subset array within the exclusion that determined the value of
first_excluded_byte
            Set next_excluded_begin = this subset array entry's offset field plus
first_excluded_byte
            If next_excluded_begin > next_included_begin
                To the hash, add all bytes between next_included_begin and
next_excluded_begin minus one (inclusive)
            Set next_included_begin  = this subset array entry's length field plus
next_excluded_begin
        If next_included_begin < first_excluded_byte + excluded_byte_count
            To the hash, add all bytes between next_included_begin and first_excluded_byte +
excluded_byte_count minus one (inclusive)
    Set offset = first_excluded_byte + excluded_byte_count
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19.7.2. Exclusion list profiles

19.7.2.1. Basic profile

Typical untimed media (e.g., still photos) and timed media (e.g., videos with or without audio tracks, whether
fragmented or not) need only include the mandatory exclusions listed in Exclusion List Requirements.

NOTE
Editor’s Note

Additional recommended exclusions for other types of media should be added here as needed.

19.8. General Boxes Hash
A claim generator should use a general box hash assertion to verify the integrity, with a hard binding (i.e.,
cryptographic hash), of assets whose formats use a non-BMFF-based box format such as JPEG, PNG, or GIF.

A General Box Hash assertion shall have a label of c2pa.hash.boxes. Such an assertion consists of an array of
structures, each one listing one or more boxes (by their name/identifier) and a hash that covers that data of those
boxes (and any possible data that may be present in the file between them), along with the algorithm used for
hashing. The boxes must appear in the assertion in the same order that they appear in the asset. The creation of the
hashes is described in Section 14.1, “Hashing”, and the value shall be present in the hash field.

The hash value for a range of boxes shall be computed from the start of the first box (in the range) until the end of the
last box (in the range). This would include any arbitrary bytes that may be present between boxes.

The box containing the C2PA Manifest (e.g. APP11 for JPEG, caBX for PNG, or 21FF for GIF) shall also be listed, but in
order to clearly identify it as the C2PA Manifest box, it shall have the name C2PA and the value of hash shall be the
binary string 0 (a single byte with a value of 0).

IMPORTANT

JPEG Special Handling

When working with JPEG, the APP11 box is used for standards other than C2PA (i.e., JPEG
360). In those situations, all non-C2PA APP11 boxes shall be included in the list of hashed
boxes. The APP11 boxes containing the C2PA Manifest Store shall be identified by C2PA. All
other boxes shall be identified by the symbol found in ISO 10918-1:1994, Table B.1.

The C2PA Manifest Store can be identified by it being a JUMBF superbox with a label of c2pa
and a UUID of 0x63327061-0011-0010-8000-00AA00389B71 as described in Section
12.1.1.2, “Manifest Store”.

NOTE
The Start of Scan box and Restart boxes, label of SOS and RST[n], will
include the entropy coded segments following the respective marker.

The Multi-Picture Format (MPF) extension to JPEG can also be supported using this method by
listing all boxes contained in the file as they appear.

IMPORTANT PNG Special Handling
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A PNG file always begins with an 8 byte header (89 50 4E 47 0D 0A 1A 0A). Including
this in the hash will improve the integrity of the image. To include it, use the special value
PNGh as the first box in the list of boxes and start hashing from the first byte of the image.

IMPORTANT

GIF Naming Convention

The hash of a box containing a 'Packed Fields' attribute will also hash the optional data
indicated by that attribute. For example, The Image Descriptor will include the Local Color
Table block, and the Logical Screen Descriptor will include the Global Color Table block, if
they exist.

For all boxes containing a block label, the naming convention shall be as follows: "<Block
Label>".

For all extension blocks, the naming convention is as follows: "<Extension
Introducer><Extension Label>".

The only other blocks that are not described by the above naming convention are:

• The header will be marked with "GIF89a".

• The Table Based Image Data will be marked with "TBID"

• The Logical Screen Descriptor will be marked with "LSD"

For example:

• Header: "GIF89a"

• Trailer: "3B"

• Image Descriptor: "2C"

• Comment Extension: "21FE"

The pad value shall always be present but shall be a zero-filled byte string of length 0 unless used to replace (i.e.,
"pad") bytes during multiple pass processing.

NOTE
Section 11.4, “Multiple Step Processing” describes how to fill in the correct values and adjust the
padding.

A General Box Hash assertion shall not appear in a Cloud Data assertion.

19.8.1. Schema and Example

The schema for this type is defined by the box-map rule in the following CDDL Definition:

box-map = {
  "boxes": [1* box-hash-map],
  ? "alg":tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
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algorithm used to compute the hash in this assertion, taken from the C2PA hash algorithm
identifier list. If this field is absent, the hash algorithm is taken the `alg` value of the
enclosing structure. If both are present, the field in this structure is used. If no value
is present in any of these places, this structure is invalid; there is no default.
}

box-hash-map = {
  "names": [1* box-name], ; An array of strings representing the box identifiers in order of
appearance (e.g., `APP0`, `IHDR`)
  ? "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute the hash in this assertion, taken from the C2PA hash algorithm
identifier list. If this field is absent, the hash algorithm is taken the `alg` value of the
enclosing structure. If both are present, the field in this structure is used. If no value
is present in any of these places, this structure is invalid; there is no default.
  "hash": bstr, ; byte string of the hash value
  "pad": bstr, ; zero-filled byte string used for filling up space
}

box-name /= tstr .size (1..10)

Three examples in CBOR Diagnostic Format (.cbordiag) are shown below. The first is for a JPEG file, the second is
for a PNG file, and the third is for a GIF file.

{
    "alg" : "sha256",
    "boxes": [
        {
            "names" : ["SOI", "APP0", "APP2"],
            "hash" : b64'...',
            "pad" : b64'',
        },
        {
            "names" : ["C2PA"],
            "hash" : 0,
            "pad" : b64'',
        },
        {
            "names" : ["DQT", "SOF0", "DHT", "SOS", "RST0", "RST1", "EOI"],
            "hash" : b64'...',
            "pad" : b64'',
        }
    ]
}

{
    "alg" : "sha256",
    "boxes": [
        {
            "names" : ["PNGh", "IHDR"],
            "hash" : b64'...',
            "pad" : b64'',
        },
        {
            "names" : ["C2PA"],
            "hash" : 0,
            "pad" : b64'',
        },
        {
            "names" : ["sBIT"],
            "hash" : b64'...',
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            "pad" : b64'',
        },
        {
            "names" : ["zTXt"],
            "hash" : b64'...',
            "pad" : b64'',
        },
        {
            "names" : ["IDAT", "IEND"],
            "hash" : b64'...',
            "pad" : b64'',
        }
    ]
}

{
    "alg" : "sha256",
    "boxes": [
        {
            "names" : ["GIF89a", "LSD"]
            "hash" : b64'...',
            "pad" : b64'',
        },
        {
            "names" : ["2C", "TBID", "2C", "TBID"],
            "hash" : b64'...',
            "pad" : b64'',
        },
        {
            "names" : ["21FE"],
            "hash" : b64'...',
            "pad" : b64'',
        },
        {
            "names" : ["21F9"],
            "hash" : b64'...',
            "pad" : b64'',
        },
        {
            "names" : ["3B"],
            "hash" : b64'...',
            "pad" : b64'',
        },
    ]
}

19.9. Soft Binding
If a claim generator wishes to provide a soft binding for the asset’s content, it shall be described using a soft binding
assertion. The types of soft bindings which can be created and stored in such an assertion are described in Section
10.3, “Soft Bindings”.

A previous version of this specification provided a url field to provide a pointer to where the hashed data can be
located, but it was never used. This field is now deprecated in favor of the Asset Reference Assertion. Claim generators
shall not add this field to a soft binding assertion, and consumers shall ignore the field when present, except this shall
not affect inclusion of the field as part of the content being validated as described in Section 16.7.3, “Assertion
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Validation”.

A Soft Binding assertion shall have a label of c2pa.soft-binding.

19.9.1. Schema and Example

The schema for this type is defined by the soft-binding-map rule in the following CDDL Definition:

;The data structure used to store one or more soft bindings across some or all of the
asset's content
soft-binding-map = {
  "alg": tstr, ; A string identifying the soft binding algorithm and version of that
algorithm used 
              ; to compute the value, taken from the C2PA soft binding algorithm identifier
list. If this field is absent, the algorithm is taken from the `softbinding-alg` value of
the enclosing structure. If both are present, the field in this structure is used. 
              ; If no value is present in any of these places, this structure is invalid;
there is no default.
  "blocks": [1* soft-binding-block-map],
  "pad": bytes, ; zero-filled byte string used for filling up space
  ? "pad2": bytes, ; optional zero-filled byte string used for filling up space
  ? "name": tstr .size (1..max-tstr-length), ; (optional) a human-readable description of
what this hash covers
  ? "alg-params": bstr, ; (optional) CBOR byte string describing parameters of the soft
binding algorithm. 
                        ; If this field is absent, the algorithm is taken from the
`softbinding-alg-params` 
                        ; value of the enclosing structure, if present."
  ? "url": uri, ; Unused and deprecated. Claim generators shall not add this field and
consumers shall ignore it if present.
}

soft-binding-block-map = {
  "scope": soft-binding-scope-map,
  "value": bstr, ; CBOR byte string describing, in algorithm specific format, 
                ; the value of the soft binding computed over this block of digital content"
}

soft-binding-scope-map = {
  ? "extent": bstr, ;CBOR byte string describing, in algorithm specific format, 
                    ; the part of the digital content over which the soft binding value has
been computed"
  ? "timespan":soft-binding-timespan-map,
}

soft-binding-timespan-map = {
  "start": uint, ; Start of the time range (as milliseconds from media start) over which the
soft binding value has been computed.
  "end": uint,   ; End of the time range (as milliseconds from media start) over which the
soft binding value has been computed.
}

An example in CBOR Diagnostic Format (.cbordiag) is shown below:

{
  "alg": "phash",
  "pad": h'00',
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  "url": 32("http://example.c2pa.org/media.mp4"),
  "blocks": [
    {
      "scope": {
        "extent": b64'c2NvcGUxCg==',
        "timespan": {
          "end": 133016
          "start": 0,
        }
      },
      "value": b64'dmFsdWUxCg=='
    },
    {
      "scope": {
        "extent": b64'YzJOdmNHVXlDZz09==',
        "timespan": {
          "end": 245009  
          "start": 133017,
        }
      },
      "value": b64'ZG1Gc2RXVXlDZz09=='
    }
  ]
}

The soft binding algorithm used shall be present as the value of the alg field, and the blocks over which is was
applied shall be listed in the blocks field. If the algorithm used requires any additional parameters, they should be
present as the value of alg-params.

19.10. Cloud Data
There are use cases where storing the data for the assertion remotely, such as in the cloud, is better than embedded
inside the asset, especially when the data is large. For any such cases, it is possible to use a special type of assertion
that serves as a reference to that information. For privacy and reliability reasons, data referenced through a Cloud
Data assertion shall be considered optional: their contents should not be retrieved as part of manifest validation. A
validator may retrieve the contents later to serve an application-dependent need, such as further exploration of the
provenance history.

If assertion metadata is included as part of another assertion, then it too would be part of the information referenced
from a Cloud Data assertion. It is also possible to store individual assertion metadata assertions remotely, just as with
other assertion types.

A Cloud Data assertion shall have a label of c2pa.cloud-data.

A Cloud Data assertion must not refer to an assertion with the label c2pa.hash.data, c2pa.hash.boxes,
c2pa.hash.bmff (deprecated), or c2pa.hash.bmff.v2.

19.10.1. Schema and Example

The schema for this type is defined by the cloud-data-map rule in the following CDDL Definition:
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; Assertion that references the actual assertion stored in the cloud
cloud-data-map = {
  "label": tstr, ; label for the cloud-based assertion (eg.c2pa.actions)
  "size": size-type, ; Number of bytes of data
  "location": $hashed-ext-uri-map, ; http(s) URL to where the cloud-hosted assertion can be
found
  "content_type": tstr .regexp "^[-\\w.]+/[-+\\w.]+$", ; media/MIME type for the data
  ? "metadata": $assertion-metadata-map,  ; additional information about the assertion
}

; size is minimum 1 in multiples of 1.0
size-type = int .ge 1

An example in CBOR Diagnostic Format (.cbordiag) is shown below:

{
  "size": 98765,
  "label": "c2pa.thumbnail.claim.jpg",
  "location": {
    "url": "https://some.storage.us/foo",
    "hash": b64'zP84FPSremIrAQHlhw+hRYQdZp/+KggnD0W8opXlIQQ='
  },
  "content_type": "application/jpeg"
}

19.11. Thumbnail
A thumbnail assertion provides an approximate visual representation of the asset at a specific event in the lifecycle of
an asset. There are currently two specific events:

• ingredient import and claim creation

• each using a unique label for the assertion.

For thumbnails created at claim creation time, the Thumbnail assertion shall have a label that starts with
c2pa.thumbnail.claim and be followed by the IANA registry image type (e.g.,
c2pa.thumbnail.claim.png). For each of these types of thumbnails, there can be only one per claim.

When importing an ingredient (see Section 11.3.2.2, “Adding Ingredients”), it is preferable to reference that
ingredient’s own manifest-stored thumbnail. However, some ingredients may not include a thumbnail assertion, or
even a manifest. In that case, a new thumbnail of the ingredient should be generated, and a new thumbnail assertion
in the active manifest created. The Thumbnail assertion shall have a label that starts with
c2pa.thumbnail.ingredient and be followed by an underscore (_ (U+005F)) then a unique ID such as a simple
monotonically increasing integer and ending with the image type. For example, an ingredient thumbnail of type jpeg
could have label c2pa.thumbnail.ingredient_1.jpg.

The data in a thumbnail assertion is the bits of a file (such as a raster image) in whatever format is desired by the claim
generator. The Embedded File content type (ISO 19566-5:AMD-1), bfdb, shall be used to contain the thumbnail’s
data.
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19.12. Actions
An actions assertion provides information on edits and other actions taken that affect the asset’s content. There will
be an array of actions - each action declaring what took place on the asset, when it took place, along with possible
other information such as what software performed the action.

There are two versions of the Actions assertion - the original v1 (which shall have a label of c2pa.actions) and the
new and improved v2 (which shall have a label of c2pa.actions.v2). There shall be no more than one Actions
assertion of any version per C2PA Manifest. Actions are modelled after XMP ResourceEvents, though contain a number
of C2PA-specific adjustments.

v1 actions are fully specified in its actions array. However, in v2, an action may either be fully specified in an
element of the actions array or it may be derived from an element in the templates array with the same action
name.

For each action present in either the actions or templates arrays, the value of the action field shall be either a
pre-defined action name (c2pa.resized, c2pa.edited, etc.) or entity-specific action name
(com.fabrikam.gaussianBlur, etc.).

The set of pre-defined names, prefixed with c2pa. are:

Action Meaning

c2pa.color_adjustments Changes to tone, saturation, etc.

c2pa.converted The format of the asset was changed.

c2pa.created The asset was first created, usually the asset’s origin.

c2pa.cropped Areas of the asset’s "editorial" content were cropped out.

c2pa.drawing Changes using drawing tools including brushes or eraser.

c2pa.edited Generalized actions that would be considered 'editorial transformations'
of the content.

c2pa.filtered Changes to appearance with applied filters, styles, etc.

c2pa.opened An existing asset was opened and is being set as the parentOf
ingredient.

c2pa.orientation Changes to the direction and position of content.

c2pa.placed Added/Placed a componentOf ingredient into the asset.

c2pa.published Asset is released to a wider audience.

c2pa.redacted One or more assertions or W3C verifiable credentials were redacted

c2pa.removed A componentOf ingredient was removed.
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Action Meaning

c2pa.repackaged A conversion of one packaging or container format to another. Content is
repackaged without transcoding. This action is considered as a 'non-
editorial transformation' of the parentOf ingredient.

c2pa.resized Changes to content dimensions and/or file size

c2pa.transcoded A conversion of one encoding to another, including resolution scaling,
bitrate adjustment and encoding format change. This action is
considered as a 'non-editorial transformation' of the parentOf
ingredient.

c2pa.unknown Something happened, but the claim_generator cannot specify what.

An action may include a free-text description, in the description field, of what an action does. This is most useful
for non-standard actions, however, it could also be used as a way to provide additional information about a standard
action. For example, a c2pa.edited action could have a description that says "Paintbrush tool".

If present, the reason field shall contain one of the standard values, or a custom value which conforms to the same
syntax as custom labels, for the rationale behind the action.

• c2pa.PII.present

• c2pa.invalid.data

• c2pa.trade-secret.present

• c2pa.government.confidential

NOTE
Although the reason field may be used for any actions, only redaction-focused c2pa values are
defined at this time.

When using a c2pa.redacted action, the reason field shall contain the rationale for the redaction. Additional
requirements for the c2pa.redacted action can be found in Section 19.12.2, “Parameters”.

Also present may be the date and time when the action took place in the when field. If included, the value of the when
field shall be compliant with ISO 8601.

NOTE The when field serves as a simple non-trusted timestamp. UTC-based times are recommended.

The software or hardware used to perform the action can be identified via the softwareAgent field. In a v1 action,
this is a simple text string. However, for v2, softwareAgent uses the richer generator-info-map structure as
described in Section 11.2.2.1, “Generator Info Map”.

NOTE This field is useful for when the softwareAgent is not the same program as the Claim Generator.

An action may include an actors key which can point to the identity of one or more human actor who performed the
action as described in [_common_data_model_actor]. It may also include a digitalSourceType key, whose value
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shall be one of the terms defined by the IPTC or a C2PA specific value from the list below:

c2pa.trainedAlgorithmicData

Data that is the result of algorithmically using a model derived from sampled content and data. Differs from
trainedAlgorithmicMedia in that the result isn’t a media type (e.g., image or video) but is a data format (e.g., CSV,
pickle)

NOTE
One common use case for the digitalSourceType key is in conjunction with the
c2pa.created action to provide a way to specify how the media item was created - such as
"digital capture", "digitised from negative" or "trained algorithmic media".

For "trained algorithmic media" assets, such as those created by Generative AI, one or more ingredients may be
added to the C2PA Manifest to provide info about the inputs that led to the production of the asset. They can be
referenced from a c2pa.placed or c2pa.created action as shown below.

19.12.1. Changes

The action may be specific to only a portion of an asset - such as a range of frames in a video or a specific area on an
image. In v1, the value was a simple text string. For v2, they are identified using a changes field, whose value is a
region-map as described in Section 19.3, “Regions of Interest”.

19.12.2. Parameters

An action may include a parameters key that provides for the specification of some action-specific information via
some pre-defined as well as the open-ended inclusion of any other keys (and their associated values). This is useful for
providing extra information that would be useful to a specific workflow or C2PA Manifest Consumer.

When using a c2pa.transcoded, c2pa.repackaged, c2pa.opened, or a c2pa.placed action, the
ingredient field (for v1) or ingredients field (for v2) in the parameters object shall contain the hashed
JUMBF URI to one or more related ingredient assertion. A c2pa.removed action may have the hashed JUMBF URI to
an ingredient, if that ingredient is from a different manifest than the active one.

As an example, the c2pa.created action for an image created by a Generative AI model, might look like this, in
CBOR Diagnostic Format (.cbordiag):

// an actions assertion used to describe output of Generative AI //
{
  "actions": [
    {
      "action": "c2pa.created",
      "when": 0("2023-02-11T09:00:00Z"),
      "softwareAgent" : {
          "name": "Joe's Photo Editor",
          "version": "2.0",
          "schema.org.SoftwareApplication.operatingSystem": "Windows 10"
      },
      "digitalSourceType":
"http://cv.iptc.org/newscodes/digitalsourcetype/trainedAlgorithmicMedia",
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      "parameters" : {
        "ingredients" : [ 
          {
            "url": "self#jumbf=c2pa/joe-
ed:urn:uuid:ABCD/c2pa.assertions/c2pa.ingredient__1", 
            "alg": "sha256",
            "hash" : b64'...',
          },
          {
            "url": "self#jumbf=c2pa/joe-
ed:urn:uuid:EFGH/c2pa.assertions/c2pa.ingredient__2", 
            "alg": "sha256",
            "hash" : b64'...',
          }
        ]
      }
    }
  ]
}

When using a c2pa.redacted action, the redacted field in the parameters object shall contain the hashed
JUMBF URI to the assertion that has been redacted.

19.12.3. Action Templates

The elements of the templates array, in a v2 action, are described using a combination of common elements about
actions, along with some template-specific values. These values are combined with actions of the same name, by a
C2PA Manifest Consumer, to get a full picture of an action.

For example, given the following action & template, in CBOR Diagnostic Format (.cbordiag):

{
  "actions": [
    {
      "action": "com.joesphoto.filter",
      "when": 0("2020-02-11T09:00:00Z")
    },
    {
      "action": "c2pa.edited",
      "when": 0("2020-02-11T09:10:00Z")
    },
    {
      "action": "com.joesphoto.filter",
      "when": 0("2020-02-11T09:20:00Z")
    },
    {
      "action": "c2pa.cropped",
      "when": 0("2020-02-11T09:30:00Z")
    }
  ],
  "templates": [{
        "action": "com.joesphoto.filter",
        "description": "Magic Filter",
        "digitalSourceType":
"http://cv.iptc.org/newscodes/digitalsourcetype/compositeSynthetic",
    "softwareAgent" : {
        "name": "Joe's Photo Editor",
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        "version": "2.0",
        "schema.org.SoftwareApplication.operatingSystem": "Windows 10"
    }
  }]
}

A C2PA Manifest Consumer shall take the values from the template and overlay (i.e., replacing any with the same
name) the values from the action itself.

Template

action com.joesphoto.filter

description Magic Filter

digitalSourceType http://cv.iptc.org/newscodes/digitalsourcetype/compositeSynthetic

softwareAgent name Joe's Photo Editor

version 2.0

schema.org.SoftwareApplication.operatingSystem Windows 10

Action

action com.joesphoto.filter

when 2020-02-11T09:00:00Z

Result

action com.joesphoto.filter

when 2020-02-11T09:00:00Z

description Magic Filter

digitalSourceType http://cv.iptc.org/newscodes/digitalsourcetype/compositeSynthetic

softwareAgent name Joe's Photo Editor

version 2.0

schema.org.SoftwareApplication.operatingSystem Windows 10

Figure 15. Actions Template Flow

A template may include a template-parameters key that allows the inclusion of any other keys (and their
associated values). This is useful for providing extra information that would be useful to a specific workflow or C2PA
Manifest Consumer.

19.12.3.1. Icons

A template may also include an icon - an image (raster or vector) that can be used in the C2PA Manifest Consumer’s
user experience to provide some graphic representation of the action. Since a Manifest Consumer will know about all
the defined actions, such icons shall only be present in templates for entity-specific actions.

It is strongly recommend that the data for the icon be embedded in the C2PA Manifest using an embedded data box.
However, referencing via an external URI can be done instead through a hashed-ext-uri, though a Manifest
Consumer is not required to resolve the URI.

19.12.4. Localizations

If the metadata of an Actions assertion contains a Section 19.4.6.1, “Localization Dictionary” for a template, then the
localizations shall also apply to any action based on that template.

19.12.5. Related Actions

When a series of actions are related to each other, usually taking place at the same time and/or by the same actor, it
can be useful to associate them accordingly. The related field, in the v2 action, provides a place to list the
additional actions that are related. Each related action should be a subset of the primary action, only including those
fields that differ. Just as with an action template, the values are merged with those of the primary action, by a C2PA
Manifest Consumer to get a full picture of each related action.

19.12.6. Asset Renditions

Asset renditions are a common occurrence when distributing media on the internet. These renditions are often
created for the purpose of delivering media to consumers in differing connectivity, screen resolution, and other
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environments. We can use the actions assertion to help consuming actors understand the intention of certain claim
creators to create asset renditions.

The presence of only the c2pa.published, c2pa.transcoded and/or c2pa.repackaged actions in a
c2pa.actions assertion provides a signal to the manifest consumer that the signer is asserting that no "editorial"
changes have happened between the ingredient asset(s) and this one. Editorial changes are those that alter the intent
and/or meaning of the content.

NOTE These actions are the only ones supported as part of an endorsement.

The additional presence of a single "parentOf" ingredient provides a further signal to the manifest consumer that the
signer is asserting that the asset has been derived directly from that parent.

19.12.7. Deprecated Actions

The following actions were part of previous versions of this specification and have since been deprecated.
Accordingly, they shall no longer be written into c2pa.actions assertions but may appear in pre-existing C2PA
Manifests.

• c2pa.copied

• c2pa.formatted

• c2pa.version_updated

• c2pa.printed

• c2pa.managed

• c2pa.produced

• c2pa.saved

19.12.8. Schema and Example

The schema for c2pa.actions is defined by the actions-map rule, and the schema for c2pa.actions.v2 is
defined by the actions-map-v2 rule in the following CDDL Definition:

actions-map = {
  "actions" : [1* action-items-map],  ; list of actions
  ? "metadata": $assertion-metadata-map, ; additional information about the assertion
}

buuid = #6.37(bstr)

$action-choice /= "c2pa.color_adjustments"
$action-choice /= "c2pa.converted"
$action-choice /= "c2pa.copied"
$action-choice /= "c2pa.created"
$action-choice /= "c2pa.cropped"
$action-choice /= "c2pa.drawing"
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$action-choice /= "c2pa.edited"
$action-choice /= "c2pa.filtered"
$action-choice /= "c2pa.formatted"
$action-choice /= "c2pa.managed"
$action-choice /= "c2pa.opened"
$action-choice /= "c2pa.orientation"
$action-choice /= "c2pa.produced"
$action-choice /= "c2pa.placed"
$action-choice /= "c2pa.printed"
$action-choice /= "c2pa.published"
$action-choice /= "c2pa.redacted"
$action-choice /= "c2pa.removed"
$action-choice /= "c2pa.repackaged"
$action-choice /= "c2pa.resized"
$action-choice /= "c2pa.saved"
$action-choice /= "c2pa.transcoded"
$action-choice /= "c2pa.unknown"
$action-choice /= "c2pa.version_updated"
$action-choice /= tstr .regexp "([\\da-zA-Z_-]+\\.)+[\\da-zA-Z_-]+"

actor-map = {
  ? "credentials": [1* $hashed-uri-map / $hashed-ext-uri-map],
  ? "identifier": tstr .size (1..max-tstr-length), ; An identifier for a human actor
}

action-items-map = {
  "action": $action-choice,
  ? "when": tdate, ; Timestamp of when the action occurred. 
  ? "softwareAgent": tstr .size (1..max-tstr-length), ;The software agent that performed the
action.
  ? "changed": tstr .size (1..max-tstr-length), ; A semicolon-delimited list of the parts of
the resource that were changed since the previous event history. If not present, presumed to
be undefined. When tracking changes and the scope of the changed components is unknown, it
should be assumed that anything might have changed.
  ? "instanceID": buuid, ; The value of the xmpMM:InstanceID property for the modified
(output) resource
  ? "parameters": parameters-map, ; Additional parameters of the action. These will often
vary by the type of action
  ? "actors": [1* actor-map], ; An array of the creators that undertook this action
  ? "digitalSourceType": tstr .size (1..max-tstr-length), ; One of the defined source types
at https://cv.iptc.org/newscodes/digitalsourcetype/
}

parameters-map = {
  ? "ingredient": $hashed-uri-map, ; A hashed-uri to the ingredient assertion that this
action acts on
  ? "description": tstr .size (1..max-tstr-length) ; Additional description of the action
  * tstr => any
}

; Version 2 (v2) of the Actions assertion

$action-reason /= "c2pa.PII.present"
$action-reason /= "c2pa.invalid.data"
$action-reason /= "c2pa.tradesecret.present"
$action-reason /= "c2pa.government.confidential"
$action-reason /= tstr .regexp "([\\da-zA-Z_-]+\\.)+[\\da-zA-Z_-]+"

actions-map-v2 = {
  "actions" : [1* action-items-map-v2],     ; list of actions
  ? "templates": [1* $action-template-map-v2], ; list of templates for the actions
  ? "metadata": $assertion-metadata-map,    ; additional information about the assertion
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}

action-common-map-v2 = {
  "action": $action-choice,
  ? "softwareAgent": $generator-info-map, ; Description of the software/hardware that did
the action
  ? "description": tstr .size (1..max-tstr-length), ; Additional description of the action,
important for custom actions
  ? "digitalSourceType": tstr .size (1..max-tstr-length), ; One of the defined source types
at https://cv.iptc.org/newscodes/digitalsourcetype/ or in this specification
}

action-items-map-v2 = {
  action-common-map-v2, ; start with the common set of items

  ? "when": tdate, ; Timestamp of when the action occurred. 
  ? "changed": [1* region-map], ; A list of the regions of interest of the resource that
were changed. If not present, presumed to be undefined. 
  ? "actors": [1* actor-map], ; An array of the actors that undertook this action
  ? "related": [1* action-items-map-v2], ; List of related actions
  ? "reason": $action-reason, ; the reason why this action was performed, required when the
action is `c2pa.redacted`
  ? "parameters": parameters-map-v2 ; Additional parameters of the action. These will often
vary by the type of action
}

action-template-map-v2 = {
  action-common-map-v2, ; start with the common set of items
  ? "icon": $hashed-uri-map / $hashed-ext-uri-map,  ; hashed_uri reference to a data box or
a hashed_ext_uri to external data
  ? "template-parameters": parameters-common-map-v2 ; Additional parameters of the template.
}

parameters-common-map-v2 = {
  * tstr => any
}

parameters-map-v2 = {
  ? "instanceID": buuid, ; The value of the xmpMM:InstanceID property for the modified
(output) resource
  ? "redacted": $jumbf-uri-type, ; A JUMBF URI to the redacted assertion, required when the
action is `c2pa.redacted`
  ? "ingredients": [1* $hashed-uri-map], ; A list of hashed JUMBF URI(s) to the ingredient
(v2) assertion(s) that this action acts on
  parameters-common-map-v2  ; anything from the common parameters
}

An example of a v2 action, in CBOR Diagnostic Format (.cbordiag), is shown below:

{
  "actions": [
    {
      "action": "c2pa.filtered",
      "when": 0("2020-02-11T09:00:00Z"),
      "actors": [
        {
          "credentials": [
            {
              "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.credentials/Joe_Bloggs",
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              "alg": "sha256",
              "hash": b64'hoOspQQ1lFTy/4Tp8Epx670E5QW5NwkNR+2b30KFXug='
            }
          ]
        }
      ],
      "parameters": {
        "instanceID": 37(h'ed610ae51f604002be3dbf0c589a2f1f')
      },
      "softwareAgent" : {
          "name": "Joe's Photo Editor",
          "version": "2.0",
          "schema.org.SoftwareApplication.operatingSystem": "Windows 10"
      }
    },
    {
      "action": "c2pa.cropped",
      "when": 0("2020-02-11T09:30:00Z")
    }
  ],
  "metadata": {
    "dateTime": 0("2021-06-28T16:34:11.457Z"),
    "reviewRating": [
      {
        "value": 1,
        "explanation": "Content bindings did not validate"
      }
    ]
  }
}

19.13. Ingredient
When assets are composed together, for example placing an image into a layer in Photoshop or an audio clip into a
video in Premiere, it is important that information about any claim from the placed asset be recorded into the new
asset to provide a way to understand the entire history of the new composed asset. This is also true when an existing
asset is used to create a derived asset or asset rendition.

Another common use for an ingredient is to describe some assets or data that was used as input to a process, such as
the training or inference requests associated with an AI/ML model.

There are two versions of the Ingredients assertion - the original v1 (which shall have a label of c2pa.ingredient)
and the new and improved v2 (which shall have a label of c2pa.ingredient.v2).

NOTE
Since there will most likely be more than one ingredient assertion, the use of the monotonically
increasing index in the label would be used (e.g., c2pa.ingredient.v2__1,
c2pa.ingredient.v2\__2).

19.13.1. Concept

The concept of ingredients in C2PA was modelled on the XMP Ingredient and Pantry model, as described in the
Partner Guide to XMP for Dynamic Media and Asset Relationships in XMP. That model relies on the fact that each asset
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used in the construction of a document has, at the time of inclusion, at least one unique identifier. However, there are
many instances where such an identifier does not exist, so in the v2 version of the ingredient assertion all identifiers
are now optional.

19.13.1.1. Establishing unique identifiers

If a claim generator is to provide unique identifiers for an ingredient, then the following recommendations shall be
followed.

If the ingredient being added contains XMP, then the asset’s xmpMM:DocumentID shall become the documentID
field while the xmpMM:InstanceID shall become the instanceID. However, if the ingredient being added does
not have any associated XMP, then it may be possible for the XMP to be created and added to the ingredient itself and
the identifiers used as described above.

When it is not possible or desirable to create XMP for an ingredient, then some other unique identifier for the
ingredient shall be used instead. In this situation, the instanceID field shall contain the unique identifier and the
documentID field shall not be present.

19.13.2. Relationship

When adding an ingredient, its relationship to the current asset shall be described. These are the possible values of
the relationship field and their meanings:

Value Meaning

parentOf The current asset is a derived asset or asset rendition of
this ingredient. This relationship value is also used with
update manifests.

componentOf The current asset is composed of multiple parts, this
ingredient being one of them.

inputTo This ingredient was used as input to a computational
process, such as an AI/ML model, that led to the creation
or modification of this asset.

19.13.3. Title

The value of dc:title shall be a human-readable name for the ingredient, which may be taken either from the
asset’s XMP or the asset’s name in a local or remote (e.g., cloud-based) filesystem. If the ingredient does not have a
specific name, then a description of the ingredient may be used instead.

19.13.4. Format

The Media Type of the ingredient shall be declared in dc:format.
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19.13.5. Schema and Example

The CDDL Definition for this type is:

;Assertion that describes an ingredient used in the asset
ingredient-map = {
  "dc:title": tstr, ; name of the ingredient
  "dc:format": format-string, ; Media Type of the ingredient
  ? "documentID": tstr, ; value of the ingredient's `xmpMM:DocumentID`
  "instanceID": tstr, ; unique identifier, such as the value of the ingredient's
`xmpMM:InstanceID`
  "relationship": $relation-choice, ; The relationship of this ingredient to the asset it is
an ingredient of.
                                        ; For example, if an ingredient with a 'parentOf'
relationship is added to
                                        ; an asset, then the asserter is stating that the
current asset is a derived asset of the ingredient.
  ? "c2pa_manifest": $hashed-uri-map, ; hashed_uri reference to the C2PA Manifest of the
ingredient
  ? "thumbnail": $hashed-uri-map, ; hashed_uri reference to an ingredient thumbnail
  ? "validationStatus": [1* $status-map] ; validation status of the ingredient
  ? "metadata": $assertion-metadata-map ; additional information about the assertion
}

; Version 2 (v2) of the Ingredient assertion
; Assertion that describes an ingredient used in the asset
ingredient-map-v2 = {
  "dc:title": tstr, ; name of the ingredient
  "dc:format": format-string, ; Media Type of the ingredient
  "relationship": $relation-choice, ; The relationship of this ingredient to the asset it is
an ingredient of.
                                        ; For example, if an ingredient with a 'parentOf'
relationship is added to
                                        ; an asset, then the asserter is stating that the
current asset is a derived asset of the ingredient.
  ? "documentID": tstr, ; value of the ingredient's `xmpMM:DocumentID`
  ? "instanceID": tstr, ; unique identifier, such as the value of the ingredient's
`xmpMM:InstanceID`
  ? "data" : $hashed-uri-map / $hashed-ext-uri-map, ; hashed_uri reference to a data box or
a hashed_ext_uri to external data
  ? "c2pa_manifest": $hashed-uri-map, ; hashed_uri reference to the C2PA Manifest of the
ingredient
  ? "thumbnail": $hashed-uri-map, ; hashed_uri reference to a thumbnail in a data box
  ? "validationStatus": [1* $status-map] ; validation status of the ingredient
  ? "description": tstr .size (1..max-tstr-length) ; Additional description of the
ingredient
  ? "informational_URI": tstr .size (1..max-tstr-length) ; URI to an informational page
about the ingredient or its data
  ? "metadata": $assertion-metadata-map ; additional information about the assertion
}

format-string = tstr .regexp "^\\w+\/[-+.\\w]+$"

; Choices that describe the reason for how the ingredient is related to the asset
$relation-choice /= "parentOf"
$relation-choice /= "componentOf"
$relation-choice /= "inputTo"

; Success codes
$status-code /= "claimSignature.validated"
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$status-code /= "signingCredential.trusted"
$status-code /= "timeStamp.trusted"
$status-code /= "assertion.hashedURI.match"
$status-code /= "assertion.dataHash.match"
$status-code /= "assertion.bmffHash.match"
$status-code /= "assertion.accessible"

; Failure codes
$status-code /= "claim.missing"
$status-code /= "claim.multiple"
$status-code /= "claim.hardBindings.missing"
$status-code /= "claim.required.missing"
$status-code /= "claim.cbor.invalid"
$status-code /= "ingredient.hashedURI.mismatch"
$status-code /= "claimSignature.missing"
$status-code /= "claimSignature.mismatch"
$status-code /= "manifest.inaccessible"
$status-code /= "manifest.multipleParents"
$status-code /= "manifest.update.invalid"
$status-code /= "manifest.update.wrongParents"
$status-code /= "signingCredential.untrusted"
$status-code /= "signingCredential.invalid"
$status-code /= "signingCredential.revoked"
$status-code /= "signingCredential.expired"
$status-code /= "timeStamp.mismatch"
$status-code /= "timeStamp.untrusted"
$status-code /= "timeStamp.outsideValidity"
$status-code /= "assertion.hashedURI.mismatch"
$status-code /= "assertion.missing"
$status-code /= "assertion.multipleHardBindings"
$status-code /= "assertion.undeclared"
$status-code /= "assertion.inaccessible"
$status-code /= "assertion.notRedacted"
$status-code /= "assertion.selfRedacted"
$status-code /= "assertion.required.missing"
$status-code /= "assertion.json.invalid"
$status-code /= "assertion.cbor.invalid"
$status-code /= "assertion.action.ingredientMismatch"
$status-code /= "assertion.action.redactionMismatch"
$status-code /= "assertion.action.redacted"
$status-code /= "assertion.dataHash.mismatch"
$status-code /= "assertion.bmffHash.mismatch"
$status-code /= "assertion.boxesHash.mismatch"
$status-code /= "assertion.boxesHash.unknownBox"
$status-code /= "assertion.cloud-data.hardBinding"
$status-code /= "assertion.cloud-data.actions"
$status-code /= "algorithm.unsupported"
$status-code /= "general.error" ; when nothing else applies

; custom status codes
$status-code /= tstr .regexp "([\\da-zA-Z_-]+\\.)+[\\da-zA-Z_-]+"

status-map = {
  "code": $status-code, ; A label-formatted string that describes the status
  ? "url": url-regexp-type, ; JUMBF URI reference
  ? "explanation": tstr .size (1..max-tstr-length), ; A human readable string explaining the
status
  ? "success": bool ; does the code reflect success (true) or failure (false)
}

An example in CBOR Diagnostic Format (.cbordiag) is shown below:
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{
  "dc:title": "image 1.jpg",
  "metadata": {
    "dateTime": 0("2021-06-28T16:49:32.874Z"),
    "reviewRating": [
      {
        "value": 5,
        "explanation": "Content bindings validated"
      }
    ]
  }
  "dc:format": "image/jpeg",
  "thumbnail" : {
      "url": "self#jumbf=cp2a/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.thumbnail.ingredient_1.jpg",
      "hash": b64'UjRAYWiAq4lfCRDmksWAlDJN/XtHHFFwMWymsZsm3j8='
  },
  "documentID" : "uuid:87d51599-286e-43b2-9478-88c79f49c347",
  "instanceID" : "uuid:7b57930e-2f23-47fc-affe-0400d70b738d",
  "relationship": "parentOf",
  "c2pa_manifest" : {
      "url": "self#jumbf=c2pa/urn:uuid:5E7B01FC-4932-4BAB-AB32-D4F12A8AA322",
      "hash": b64'1kjJTO108b71cL95UxgfHD3eDgk9VrCedW8n3fYTRMk='
  },
}

19.13.6. Description

An ingredient may include a free-text description, in the description field, of what an the ingredient is or is used
for. This is useful for situations where neither the title nor the format is sufficient.

19.13.7. Ingredient Data

In certain use cases, such as Generative AI, it may be important to have ingredients where the data of the ingredient is
provided - either embedded into the manifest or via a URL that references the data. This is accomplished through the
data field in the ingredient which uses a hashed-uri to point to a data box or a hashed-ext-uri to point to an
external reference.

NOTE
Using a data box implies that its content will be embedded in the manifest, and any future C2PA
Manifest that contains this asset as an ingredient. Claim Generators should take the size of this field
into consideration when choosing whether to embed data.

An example of some ingredients with data, in CBOR Diagnostic Format (.cbordiag), are shown below:

// prompt's data box //
{
  "dc:format": "text/plain",
  "data" : 'pirate with bird on shoulder'
  "data_types": [{
    "type": "c2pa.types.generator.prompt",
  }]
}
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// ingredient (prompt) //
{
  "dc:title": "prompt",
  "dc:format": "text/plain",
  "relationship": "inputTo",
  "data": {
    "url" : "self#jumbf=c2pa.databoxes/c2pa.data",
    "alg" : "sha256",
    "hash" : b64'...',
  }
}

// ingredient (model) //
{
  "dc:title": "model",
  "dc:format": "application/octet-stream",
  "relationship": "inputTo",
  "data": {
    "url": "https://tfhub.dev/deepmind/bigbigan-resnet50/1?tf-hub-format=compressed",
    "alg" : "sha256",
    "hash" : b64'...',
    "dc:format": "application/octet-stream",
    "data_types": [
      {
        "type": "c2pa.types.generator",
      },
      {
        "type": "c2pa.types.model.tensorflow",
        "version":  "1.0.0",
      },
      {
        "type": "c2pa.types.tensorflow.hubmodule",
        "version":  "1.0.0",
      }
    ]
  },
  "description": "Unsupervised BigBiGAN image generation & representation learning model
trained on ImageNet with a smaller (ResNet-50) encoder architecture.",
  "informational_URI": "https://tfhub.dev/deepmind/bigbigan-resnet50/1",
}

19.13.8. Informational URL

When it is necessary to provide a URL to a web page with information about the ingredient, such as detailed
information about a AI/ML model, it can be placed as the value of the informational_URI field of the ingredient
assertion.

IMPORTANT
The informational_URI is not an authenticated link to the content of the ingredient
itself, but something more generally of interest to a human user.

19.13.9. Thumbnails

When adding an ingredient, it may be useful to also include a thumbnail of the ingredient to help establish the state of
the ingredient at the time of import. For that purpose, a thumbnail should be added as a data box and referenced
herein via a hashed-uri reference.
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Manifest Consumers should support the thumbnail assertion recommended by earlier versions of this specification.
Claim Generators shall use data boxes when creating C2PA Manifests.

19.13.10. Existing manifests

If the ingredient has an existing C2PA Manifest Store, then all C2PA Manifests in the store (both standard and updates)
shall be copied into the C2PA Manifest Store for the asset. The URI reference to the ingredient’s active C2PA Manifest
shall be stored as the value of c2pa_manifest.

NOTE
A C2PA Manifest Store may contain JUMBF boxes or superboxes that are not C2PA Manifests. They
need not be copied as part of this process.

Since an asset may not have its C2PA Manifest Store embedded, but instead refer to it externally, and it cannot be
retrieved by the Claim Generator, a status code of manifest.inaccessible shall be added to
validationStatus as described below.

19.13.10.1. Ingredient validation

In addition, it is recommended that the C2PA validator validate the ingredient’s active C2PA Manifest and document
the validation status in the validationStatus field. When present, the value of the validationStatus field
shall contain at least one entry in the array.

Each object in the validationStatus array consists of a code value that describes the validation status of a
specific part of the manifest along with an optional success boolean value representing if the code reflect success
(true) or failure (false). A optional url field with a JUMBF URI reference to that element in the manifest may be
present. Depending on the code, the url could be to a claim, a claim signature or a specific assertion. An optional
description of the validation status may be present in the explanation field if there is a need for an additional
human readable explanation.

Custom status codes are also permitted, when a claim generator has a need to record some process-specific status
information. The code shall conform to the same syntax as custom labels, e.g. com.litware and the
validationStatus object shall contain a success boolean. Status codes are defined in Section 16.1, “Status
Codes”.

19.14. Depthmap
A Depthmap assertion provides a 3D description of the scene being captured by a camera. A Depthmap assertion may
contain a pre-computed depth map, or data which can later be used to compute a depth map by downstream
ingestion or viewing software (e.g., left/right stereo images).

All Depthmap assertions shall have a label that starts with c2pa.depthmap and be followed by a third section that
identifies the type of depth map.

C2PA Depthmap assertions shall be captured optically, not inferred from a single 2D image via, for example, a
machine learning model.
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19.14.1. GDepth Depthmap

A GDepth depth map assertion leverages the well-established GDepth format to encode a pre-computed depth map.

A GDepth Depthmap assertion shall have a label of c2pa.depthmap.GDepth.

The schema for the data stored in this assertion should always mirror the schema at https://developers.google.com/
depthmap-metadata/reference.

NOTE
There is no need to worry about splitting up the GDepth data when it grows beyond 64KB, as that
limit existed in XMP to accommodate APP1 segment size limitations.

19.14.2. Schema and Example

The schema for this type is defined by the depthmap-gdepth-map rule in the following CDDL Definition:

; Assertion that encodes a GDepth-formatted 3D depth map of the captured scene
depthmap-gdepth-map = {
  "GDepth:Format": format-type, ; The format that describes how to convert the depthmap data
into a valid float-point depthmap. Current valid values are 'RangeInverse' and 'RangeLinear'
  "GDepth:Near": float, ; The near value of the depthmap in depth units
  "GDepth:Far": float,  ; The far value of the depthmap in depth units
  "GDepth:Mime": mime-type,  ;  The mime type for the base64 string describing the depth
image content, e.g. 'image/jpeg' or 'image/png'",
  "GDepth:Data": base64-string-type,  ; The base64 encoded depth image. Please see GDepth
encoding page at developers.google.com. The depthmap will be stretched-to-fit the
corresponding color image
  ? "GDepth:Units": unit-type,   ; The units of the depthmap, e.g. 'm' for meters or 'mm'
for millimeters
  ? "GDepth:MeasureType": depth-meas-type,  ; The type of depth measurement. Current valid
values are 'OpticalAxis' and 'OpticRay
  ? "GDepth:ConfidenceMime": confidence-mime-type,  ; The mime type for the base64 string
describing the confidence image content, e.g. 'image/png'.",
  ? "GDepth:Confidence": base64-string-type,   ; The base64 encoded confidence image. Please
see GDepth encoding page at developers.google.com. The confidence map should have the same
size as the depthmap
  ? "GDepth:Manufacturer": tstr .size (1..max-tstr-length),  ; The manufacturer of the
device that created this depthmap
  ? "GDepth:Model": tstr .size (1..max-tstr-length),  ; The model of the device that created
this depthmap
  ? "GDepth:Software": tstr .size (1..max-tstr-length), ; The software that created this
depthmap
  ? "GDepth:ImageWidth": float, ; The width in pixels of the original color image associated
to this depthmap. This is NOT the depthmap width. If present, apps must update this property
when scaling, cropping or rotating the color image. Clients use this property to verify the
integrity of the depthmap w.r.t. the color image
  ? "GDepth:ImageHeight": float, ; The height in pixels of the original color image
associated to this depthmap. This is NOT the depthmap height. If present, apps must update
this property when scaling, cropping or rotating the color image. Clients use this property
to verify the integrity of the depthmap w.r.t. the color image
  ? "metadata": $assertion-metadata-map, ; additional information about the assertion
}

base64-string-type = tstr

$mime-choice /= "image/jpeg" 
$mime-choice /= "image/png"
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mime-type = $mime-choice .default "image/jpeg"
confidence-mime-type = $mime-choice .default "image/png"

$format-choice /= "RangeInverse"
$format-choice /= "RangeLinear"

format-type = $format-choice .default "RangeInverse"

; Unit can be meter represented as "m" or could be millimeter represented as "mm"
$unit-choice /= "m"
$unit-choice /= "mm"
unit-type = $unit-choice .default "m"

$depth-meas-choice /= "OpticalAxis"
$depth-meas-choice /= "OpticRay"
depth-meas-type = $depth-meas-choice .default "OpticalAxis"

An example in CBOR Diagnostic Format (.cbordiag) is shown below:

{
  "GDepth:Far": 878.7,
  "GDepth:Data": "hoOspQQ1lFTy/4Tp8Epx670E5QW5NwkNR+2b30KFXug=",
  "GDepth:Mime": "image/jpeg",
  "GDepth:Near": 29.3,
  "GDepth:Model": "CameraCompany Shooter S1",
  "GDepth:Units": "mm",
  "GDepth:Format": "RangeInverse",
  "GDepth:Software": "Truepic Foresight Firmware for QC QRD8250 v0.01",
  "GDepth:Confidence": "acdbpQQ1lFTy/4Tp8Epx670E5QW5NwkNR+2b30KFXug=",
  "GDepth:ImageWidth": 32.2,
  "GDepth:ImageHeight": 43.6
  "GDepth:MeasureType": "OpticalAxis",
  "GDepth:Manufacturer": "CameraCompany",
  "GDepth:ConfidenceMime": "image/png",
}

As defined by the GDepth specification, the following fields shall be present in all GDepth depth map assertions:

• GDepth:Format

• GDepth:Near

• GDepth:Far

• GDepth:Mime

• GDepth:Data

19.15. Endorsement Assertion
An endorsement is a way of indicating approval for specific actions made on content after it has had a manifest
attached (see Section 15.7, “Endorsement”). The Endorsement assertion is where an endorsement from the signer of
an ingredient asset is stored. These endorsements are typically provided (out-of-band of this specification) by
ingredient asset signers to actors those signers trust to perform the actions listed in Section 15.7, “Endorsement”.
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They are used by a validator when assessing whether the actions of the active manifest are "endorsed" or not (see
endorsement validation).

To attach an endorsement, a claim generator must ensure that:

• only the actions listed in the Section 15.7, “Endorsement” section are present in the actions assertion

• exactly one ingredient assertion is present in the assertion store, and,

• that ingredient is the one referenced by the actions assertion’s parameters.ingredient field

An Endorsement assertion shall have a label of c2pa.endorsement, and there shall be at most one Endorsement
assertion per manifest. The assertion contents shall be a COSE_Sign1_Tagged structure that is created as defined
in Section 15.7.1, “Endorsement Generation”.

19.16. Exif Information
The Exif Information assertion can be used to ensure that Exif information, for example about the capture device, is
added to the asset in a way that can be validated cryptographically. It is preferable to copy this information from the
Exif block or from the Exif namespace of the XMP block. Information should be copied to JSON-LD using the XMP
field names specified in the Exif 2.32 metadata for XMP specification. When copying the information from XMP, the
data shall be re-serialized according to the rules of the JSON-LD serialization of XMP.

An Exif Information assertion shall have a label of stds.exif.

Any property from the latest version of the Exif specification (currently 2.32) can be added to the stds.exif assertion,
with the exception of the MakerNote (37500, 0x927c) field, the contents of which are vendor-specific.

This assertion should be used to assert the precise location associated with the content using the Exif GPS properties
(those starting exif:GPS). For broad information about the location, see Section 19.17, “IPTC Photo and Video
Metadata”.

An example of an Exif Information assertion:

{
  "@context" : {
    "dc": "http://purl.org/dc/elements/1.1/",
    "exifEX": "http://cipa.jp/exif/2.32/",
    "exif": "http://ns.adobe.com/exif/1.0/",
    "tiff": "http://ns.adobe.com/tiff/1.0/",
    "xmp": "http://ns.adobe.com/xap/1.0/",
    "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
  },
  "exif:GPSVersionID": "2.2.0.0",
  "exif:GPSLatitude": "39,21.102N",
  "exif:GPSLongitude": "74,26.5737W",
  "exif:GPSAltitudeRef": 0,
  "exif:GPSAltitude": "100963/29890",
  "exif:GPSTimeStamp": "2019-09-22T18:22:57Z",
  "exif:GPSSpeedRef": "K",
  "exif:GPSSpeed": "4009/161323",
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  "exif:GPSImgDirectionRef": "T",
  "exif:GPSImgDirection": "296140/911",
  "exif:GPSDestBearingRef": "T",
  "exif:GPSDestBearing": "296140/911",
  "exif:GPSHPositioningError": "13244/2207",
  "exif:ExposureTime": "1/100",
  "exif:FNumber": 4.0,
  "exif:ColorSpace": 1,
  "exif:DigitalZoomRatio": 2.0,
  "tiff:Make": "CameraCompany",
  "tiff:Model": "Shooter S1",
  "exifEX:LensMake": "CameraCompany",
  "exifEX:LensModel": "17.0-35.0 mm",
  "exifEX:LensSpecification": { "@list": [ 1.55, 4.2, 1.6, 2.4 ] }
}

NOTE

Although the redaction process works in such a way that only an entire assertion can be redacted
(see Section 6.7, “Redaction of Assertions”), the use of an update manifest enables partial redaction
by removing the original and then placing the new, reduced, versions in the update manifest. This
new assertion would be presented in a user experience in association with the signer of the update
manifest and not with the signer of the C2PA Manifest that has been redacted.

For example, an assertion containing both location data and camera information which may need to
have the location data redacted which could be done through an update manifest with a new
stds.exif assertion with only the camera information.

19.17. IPTC Photo and Video Metadata
The International Press Telecommunications Council defines a standard set of descriptive, administrative and rights
metadata typically used by photographers, distributors, news organizations, archivists, and developers. Early
versions of the standard used IPTC’s binary Information Interchange Model (IPTC-IIM) format and later versions
introduced XMP support for all IIM fields, plus a new set of fields which can only be expressed in XMP. Together, these
are called the IPTC Photo Metadata Standard.

More recently, the IPTC has introduced an equivalent standard for video, the IPTC Video Metadata Hub. This re-uses
many of the administrative and rights properties from the Photo Metadata Standard and introduces new properties
specific to video, such as duration, episode information and frame rate.

NOTE

Versions 1.0 and 1.1 of the C2PA Specification defined an assertion stds.iptc.photo-
metedata which only implemented the IPTC Photo Metadata Standard. As of version 1.2 we now
support both photo and video metadata so we have changed the name of the assertion to
stds.iptc. The stds.iptc.photo-metadata usage is deprecated: it is not recommended,
but can still be used.

The stds.iptc assertion can be used to ensure that properties from the IPTC Photo Metadata Standard and Video
Metadata Hub, for example describing ownership, rights and descriptive metadata about a media object, are added to
the asset in a way that can be validated cryptographically.
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IPTC properties shall be stored in JSON-LD format using the XMP field names and structures specified in the IPTC
Photo Metadata Standard Specification and the IPTC Video Metadata Hub specification. The data shall be re-serialized
according to the rules of the JSON-LD serialization of XMP.

Any property from the IPTC Photo Metadata Standard or the IPTC Video Metadata Hub can be added to the
stds.iptc assertion.

A useful subset of IPTC Photo and Video Metadata properties is listed below:

Property name IPTC Photo
Metadata
property?

IPTC Video
Metadata
Hub
property?

XMP tag Value notes

Date Created yes yes photoshop:DateC
reated

ISO8601 date (see note)

Location created / Location
shot

yes yes Iptc4xmpExt:Loc
ationCreated

Location structure

Copyright Notice yes yes dc:rights string

Digital Source Type yes yes Iptc4xmpExt:Dig
italSourceType

Value from the IPTC
DigitalSourceType
NewsCodes vocabulary

Alt Text (Accessibility) yes yes Iptc4xmpCore:Al
tTextAccessibil
ity

string

File Duration no yes xmpDM:duration XMP-DM Time structure

Content Warning no yes Iptc4xmpExt:Con
tentWarning

Value from the IPTC
DigitalSourceType
NewsCodes vocabulary

Timed Text Link no yes Iptc4xmpExt:Tim
edTextLink

Qualified Link with Language
structure

In particular, the Location Created property can be used to assert the broad location associated with an asset. To
assert the precise GPS location associated with an asset, the Exif information assertion should be used.

An example of an IPTC Photo and Video Metadata assertion including location information:

{
  "@context" : {
    "Iptc4xmpCore": "http://iptc.org/std/Iptc4xmpCore/1.0/xmlns/",
    "Iptc4xmpExt": "http://iptc.org/std/Iptc4xmpExt/2008-02-29/",
    "dc" : "http://purl.org/dc/elements/1.1/",
    "photoshop" : "http://ns.adobe.com/photoshop/1.0/",
    "plus" : "http://ns.useplus.org/ldf/xmp/1.0/",
    "xmp" : "http://ns.adobe.com/xap/1.0/",
    "xmpDM" : "http://ns.adobe.com/xmp/1.0/DynamicMedia/",
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    "xmpRights" : "http://ns.adobe.com/xap/1.0/rights/"
  },
  "photoshop:DateCreated": "Aug 31, 2022", ①
  "dc:creator": [ "Julie Smith" ], ②
  "Iptc4xmpExt:DigitalSourceType":
"https://cv.iptc.org/newscodes/digitalsourcetype/digitalCapture", ③
  "dc:rights": "Copyright (C) 2022 Example Photo Agency. All Rights Reserved.", ④
  "photoshop:Credit": [ "Julie Smith/Example Photo Agency via Example Distributor" ], ⑤
  "plus:licensor": [ ⑥
    {
      "plus:LicensorName": "Example Photo Agency",
      "plus:LicensorURL": "http://examplephotoagency.com/images/"
    }
  ],
  "xmpRights:WebStatement": "http://examplephotoagency.com/terms.html", ⑦
  "xmpRights:UsageTerms": [
    "Not for online publication. Germany OUT" ⑧
  ],
  "Iptc4xmpExt:LocationCreated": { ⑨
    "Iptc4xmpExt:City": "San Francisco"
  },
  "Iptc4xmpExt:PersonInImage": [ ⑩
    "Erika Fictional"
  ],
  "Iptc4xmpCore:AltTextAccessibility": "Photo of Erika Fictional standing in front of the
Golden Gate Bridge at sunset." ⑪
}

① Date Created

② Creator

③ Digital Source Type

④ Copyright Notice

⑤ Credit Line

⑥ Licensor

⑦ Web Statement of Rights

⑧ Rights Usage Terms

⑨ Location Created

⑩ Person Shown in the Image

⑪ https://www.iptc.org/std-dev/photometadata/specification/IPTC-PhotoMetadata-2022.1.html#alt-text-
accessibility[Alt Text (Accessibility)

NOTE

Although the redaction process works in such a way that only an entire assertion can be redacted
(see Section 6.7, “Redaction of Assertions”), the use of an update manifest enables partial redaction
by removing the original and then placing the new, reduced, versions in the update manifest. User
Experiences would present this new assertion with the signer of the update manifest and not with
the signer of the C2PA Manifest that has been redacted.

152

https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#date-created
https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#creator
https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#digital-source-type
https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#copyright-notice
https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#credit-line
https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#licensor
https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#web-statement-of-rights
https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#rights-usage-terms
https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#location-created
https://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata#person-shown-in-the-image
https://www.iptc.org/std-dev/photometadata/specification/IPTC-PhotoMetadata-2022.1.html#alt-text-accessibility
https://www.iptc.org/std-dev/photometadata/specification/IPTC-PhotoMetadata-2022.1.html#alt-text-accessibility


For example, an assertion containing location properties, creator name and other information may
need to have the creator name redacted. This could be achieved through using an update manifest
containing a new stds.iptc assertion with the creator name removed but the other information
still present.

19.18. Use of Schema.org
Schema.org is a collaborative, community activity with a mission to create, maintain, and promote schemas for
structured data on the Internet. As such, they provide numerous JSON-based grammars that one may wish to include
as an assertion. When using a schema.org type as a C2PA assertion, we require a full JSON-LD serialisation. Thus, the
top-level @context field must have a value of http://schema.org.

All Schema.org assertions shall have a label that starts with schema.org and be followed by the name of the
schema that is being used. For example, schema.org.ImageObject can be used to include something extra
about an image. Since schemas on Schema.org are not versioned as described here, no version indicator is used in
their labels.

19.18.1. Claim Review

A schema that is used by the publishing community for web sites has recently also been introduced for images. A
ClaimReview is used as 'A fact-checking review of claims made (or reported) in some creative work (referenced via
itemReviewed).'

A ClaimReview assertion shall have a label of stds.schema-org.ClaimReview.

Inside the assertion (which, as described previously, is serialised as JSON-LD), the top-level @type field should be set
to a value of ClaimReview.

NOTE

The "Claim" in ClaimReview refers to a "claim made (or reported) in some creative work", not the
C2PA claim. ClaimReview assertions can be used as a way to mark the current asset as a review of the
claims of another work, not any specific part of the C2PA manifest. To provide a review of a specific
assertion, use an assertion metadata assertion. As an example: an image infographic has been
assembled that fact-checks some other claim that is currently in public distribution. The image
infographic includes a ClaimReview assertion which references the text of the claim its reviewing, a
fact-checking rating of the claim, and zero to many links to other works (e.g., articles, videos, images)
that are making that claim.

The reviewRating property inside the ClaimReview assertion is of type Rating. Depending on how an organisation
does fact-checking reviews, it may have a numerical rating, a true or false, or some other textual description of how
the asset has reviewed a claim.

The itemReviewed property inside the ClaimReview assertion may be used in one of two ways:

1. Directly reference an ingredient, by adding the appropriate ingredient JUMBF URI to the url property inside
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itemReviewed

2. Describe another item of content that is not part of the C2PA manifest, using Thing and CreativeWork properties
(https://www.claimreviewproject.com/user-guide provides a good guide on how to use the ClaimReview
vocabulary)

NOTE
The reviewRating property in a ClaimReview is not the same as the reviewRatings field in the
assertion metadata.

A partial JSON Schema for this type is:

NOTE
This schema does not validate all aspects of the referenced schema.org types (just the top-level
ClaimReview and Review properties). Please refer to https://schema.org for the details on referenced
types, and https://json-ld.org/ for how to reference them in the assertion.

{
  "$schema": "https://json-schema.org/draft/2020-12/schema",
  "$id": "http://ns.c2pa.org/claim_review/v1",
  "type": "object",
  "description": "Assertion that describes a fact-checking review of claims made (or
reported) in some creative work (referenced via itemReviewed).",
  "examples": [
    {
      "@context": "http://schema.org",
      "@type": "ClaimReview",
      "claimReviewed": "The world is flat",
      "reviewRating": {
        "@type": "Rating",
        "ratingValue": "1",
        "bestRating": "5",
        "worstRating": "1",
        "ratingExplanation": "The world is not flat",
        "alternateName": "False"
      },
      "itemReviewed": {
        "@type": "CreativeWork",
        "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.assertions/c2pa.ingredient__1"
      }
    }
  ],
  "anyOf": [
    {
      "$ref": "https://json.schemastore.org/schema-org-thing.json"
    }
  ],
  "properties": {
    "claimReviewed": {
      "type": "string",
      "minLength": 1,
      "description": "A short summary of the specific claims reviewed in a ClaimReview."
    },
    "reviewAspect": {
      "type": "string",
      "minLength": 1,
      "description": "From http://schema.org/Review: This Review or Rating is relevant to
this part or facet of the itemReviewed."
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    },
    "reviewBody": {
      "type": "string",
      "minLength": 1,
      "description": "From http://schema.org/Review: The actual body of the review."
    },
    "reviewRating": {
      "description": "From http://schema.org/Review: The rating given in this review. Note
that reviews can themselves be rated. The reviewRating applies to rating given by the
review. The aggregateRating property applies to the review itself, as a creative work.",
      "anyOf": [
        {
          "$ref": "https://json.schemastore.org/jsonld#"
        }
      ]
    },
    "itemReviewed": {
      "description": "From http://schema.org/Review: The item that is being
reviewed/rated.",
      "anyOf": [
        {
          "$ref": "https://json.schemastore.org/jsonld#"
        }
      ]
    }
  }
}

19.18.2. Creative Work

Schema.org provides a well-known and well-deployed set of types and metadata fields. One of the core types is
CreativeWork, which is intended to describe any representation of creative effort. This assertion allows an asserter to
provide various pieces of information about the asset, including who they are, and the date/time of publication.

A Creative Work assertion shall have a label of stds.schema-org.CreativeWork.

Inside the assertion (which, as described previously, is serialised as JSON-LD), the top-level @type field should be set
to a value of CreativeWork. The JSON-LD document’s root subject is the bound asset of the claim that this
assertion is part of.

A partial JSON Schema for this type is:

NOTE
This schema does not validate all aspects of the schema.org types, a valid CreativeWork assertion is
free to use any types or vocabulary specified by schema.org.

{
  "$schema": "https://json-schema.org/draft/2020-12/schema",
  "$id": "http://ns.c2pa.org/creative_work/v1",
  "type": "object",
  "description": "Assertion that describes the most generic kind of creative work, including
books, movies, photographs, software programs, etc.",
  "examples": [
    {
      "@context": [
        "http://schema.org/",
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        {
          "credential": null
        }
      ],
      "@type": "CreativeWork",
      "datePublished": "2021-05-20T23:02:36+00:00",
      "publisher": {
        "name": "Example Corp. News",
        "publishingPrinciples": "https://www.example.com/news/publishing-principles",
        "logo": "https://www.example.com/news/images/example_news_logo.png",
        "parentOrganization": {
          "name": "Example Corp",
          "legalName": "The Example Corporation"
        }
      },
      "url": "https://www.example.com/news/stories/22107423-f7ba-4c4f-a015-d952ae7e3e59",
      "identifier": "22107423-f7ba-4c4f-a015-d952ae7e3e59",
      "producer": {
        "identifier": "https://en.wikipedia.org/wiki/Joe_Bloggs",
        "name": "Joe Bloggs",
        "credential": [
          {
            "url": "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.credentials/Joe_Bloggs",
            "alg": "sha256",
            "hash": "Auxjtmax46cC2N3Y9aFmBO9Jfay8LEwJWzBUtZ0sUM8gA"
          }
        ]
      },
      "copyrightHolder": {
        "name": "Example Corp. News",
        "legalName": "Example Corporation News"
      },
      "copyrightYear": 2023,
      "copyrightNotice": "Copyright © 2023 Example Corp. News"
    }
  ],
  "anyOf": [
    {
      "$ref": "https://json.schemastore.org/schema-org-thing.json"
    }
  ],
  "properties": {
    "datePublished": {
      "type": "string",
      "minLength": 1,
      "format": "date-time",
      "description": "From http://schema.org/CreativeWork: Date of first
broadcast/publication."
    },
    "publisher": {
      "description": "From http://schema.org/CreativeWork: The publisher of the creative
work.",
      "$ref": "#/$defs/personOrgOrUri"
    },
    "identifier": {
      "$ref": "#/$defs/credential"
    },
    "producer": {
      "description": "From http://schema.org/CreativeWork: The person or organization who
produced the work (e.g. music album, movie, tv/radio series etc.).",
      "$ref": "#/$defs/personOrgOrUri"
    },
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    "creator": {
      "description": "From http://schema.org/CreativeWork: The creator/author of this
CreativeWork.",
      "$ref": "#/$defs/personOrgOrUri"
    },
    "editor": {
      "description": "From http://schema.org/CreativeWork: Specifies the Person who edited
the CreativeWork.",
      "anyOf": [
        {
          "$ref": "#/$defs/person"
        },
        {
          "$ref": "#/$defs/uri"
        }
      ]
    },
    "contributor": {
      "description": "From http://schema.org/CreativeWork: A secondary contributor to the
CreativeWork or Event.",
      "$ref": "#/$defs/personOrgOrUri"
    },
    "copyrightHolder": {
      "description": "From http://schema.org/CreativeWork: The party holding the legal
copyright to the CreativeWork.",
      "$ref": "#/$defs/personOrgOrUri"
    },
    "copyrightNotice": {
      "type": "string",
      "minLength": 1,
      "description": "From http://schema.org/CreativeWork: Text of a notice appropriate for
describing the copyright aspects of this Creative Work, ideally indicating the owner of the
copyright for the Work."
    },
    "copyrightYear": {
      "type": "integer",
      "description": "From http://schema.org/CreativeWork: The year during which the claimed
copyright for the CreativeWork was first asserted."
    }
  },
  "$defs": {
    "credential": {
      "type": "array",
      "description": "W3C Verifiable Credentials (VC) associated with this actor.",
      "minItems": 1,
      "items": {
        "oneOf": [
          {
            "$ref": "http://ns.c2pa.org/hashed-uri/v1"
          },
          {
            "$ref": "http://ns.c2pa.org/hashed-ext-uri/v1"
          }
        ]
      }
    },
    "organization": {
      "type": "object",
      "description": "From http://schema.org/Organization: An organization such as a school,
NGO, corporation, club, etc.",
      "properties": {
        "name": {
          "type": "string",
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          "minLength": 1,
          "description": "The name of the Organization."
        },
        "legalName": {
          "type": "string",
          "minLength": 1,
          "description": "From http://schema.org/Organization: The official name of the
organization, e.g. the registered company name."
        },
        "publishingPrinciples": {
          "type": "string",
          "minLength": 1,
          "format": "uri",
          "description": "From http://schema.org/Organization: The publishingPrinciples
property indicates (typically via URL) a document describing the editorial principles of an
Organization (or individual e.g. a Person writing a blog) that relate to their activities as
a publisher, e.g. ethics or diversity policies."
        },
        "logo": {
          "type": "string",
          "minLength": 1,
          "format": "uri",
          "description": "From http://schema.org/Organization: An associated logo."
        },
        "parentOrganization": {
          "description": "From http://schema.org/Organization: The larger organization that
this organization is a subOrganization of, if any.",
          "$ref": "#/$defs/organization"
        },
        "identifier": {
          "$ref": "#/$defs/credential"
        },
        "credential": {
          "$ref": "#/$defs/credential"
        }
      }
    },
    "person": {
      "type": "object",
      "description": "From http://schema.org/Organization: An organization such as a school,
NGO, corporation, club, etc.",
      "properties": {
        "name": {
          "type": "string",
          "minLength": 1,
          "description": "The name of the Person."
        },
        "givenName": {
          "type": "string",
          "minLength": 1,
          "description": "From http://schema.org/Person: Given name. In the U.S., the first
name of a Person."
        },
        "familyName": {
          "type": "string",
          "minLength": 1,
          "description": "Family name. In the U.S., the last name of a Person."
        },
        "identifier": {
          "$ref": "#/$defs/credential"
        },
        "credential": {
          "$ref": "#/$defs/credential"
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        }
      }
    },
    "uri": {
      "type": "string",
      "minLength": 1,
      "format": "uri"
    },
    "identifier": {
      "type": "string",
      "minLength": 1,
      "description": "The identifier property represents any kind of identifier for any kind
of Thing (in this case, an identifier for this CreativeWork)."
    },
    "personOrgOrUri": {
      "anyOf": [
        {
          "$ref": "#/$defs/organization"
        },
        {
          "$ref": "#/$defs/person"
        },
        {
          "$ref": "#/$defs/uri"
        }
      ]
    },
    "metadata": {
      "$ref": "http://ns.c2pa.org/assertion-metadata/v1",
      "description": "additional information about the assertion"
    }
  }
}

It is possible to associate identifying information about an actor with their specific role in the Creative Work as
described below.

19.19. Asset Reference
This assertion is used to indicate one or more locations where a copy of the asset may be obtained. Such locations
shall each be described using an asset reference assertion. The location shall be expressed via a URI.

An Asset Reference Assertion shall have a label of c2pa.asset-ref.

The timestamp within the assertion metadata provides a basis for determining the freshness of the link described as
the reference.

NOTE
Expressing a uri provides flexibility to source the asset from web locations or distributed
filesystems such as IPFS (see https://docs.ipfs.tech/how-to/address-ipfs-on-web/#subdomain-
gateway for the latter).
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19.19.1. Schema and Example

The schema for this type is defined by the asset-ref-map rule in the following CDDL Definition:

;The Asset Reference Assertion (ARA) describes where a copy of the asset may be obtained.
asset-ref-map = {
  "references": [1* ara-reference-block-map]
}

ara-reference-block-map = {
  "reference": ara-reference-uri-map,
  ? "description": tstr, ; Human readable description of the location.
}

ara-reference-uri-map = {
  "uri": tstr, ; URI reference a location where a copy of the asset may be obtained from
}

An example in CBOR Diagnostic Format (.cbordiag) is shown below:

{
  "references": [
    {
      "description": "A copy of the asset on the web",
      "reference": {
          "uri": "https://some.storage.us/foo"
        }
    },
    {
      "description": "A copy of the asset on IPFS",
      "reference": {
          "uri": "ipfs://cid"
        }
    }
  ]
}

19.20. Asset Type
The asset type assertion provides a way to more completely describe an asset, specifically additional context on how
to parse or otherwise process it. Although both Claims and Ingredients must include a valid (IANA Media Type) in the
dc:format field, there are many file formats for assets that cannot be completely described by a single Media Type
value.

For example, the dc:format field may specify that an asset is a text (text/plain) or binary (application/octet-
stream) asset, and the asset type assertion would then provide the necessary additions to enable determining
the exact type or format of the asset and possibly the version of that asset type.

The asset type assertion shall have a label of c2pa.asset-type. There shall be at most one asset type assertion in
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a C2PA Manifest.

The asset type assertion has a single required field; the types field, whose value is an array of one or more asset
types. These types can either come from the following table or be an entity-specific type (e.g., com.litware.types.abc),
provided that they conform to the same syntax as custom labels. If relevant, the version of the asset (e.g., the version
of a dataset or model) can be documented in the version field.

NOTE
As C2PA is adopted to provide provenance for AI/ML (i.e., artificial intelligence/machine learning)
assets in the future, the C2PA Manifest may be embedded in the model and dataset assets, and the
Asset Type Assertion will be used to specify the type of these model and dataset assets.

C2PA Type Description of C2PA Type of the Asset

c2pa.types.dataset AI/ML dataset which can be processed by multiple AI/ML frameworks or is
not described by any other value

c2pa.types.dataset.jax JAX dataset

c2pa.types.dataset.keras Keras dataset

c2pa.types.dataset.ml_net ML.NET dataset

c2pa.types.dataset.mxnet MXNet dataset

c2pa.types.dataset.onnx ONNX dataset

c2pa.types.dataset.openvino OpenVINO dataset

c2pa.types.dataset.pytorch PyTorch dataset

c2pa.types.dataset.tensorflow TensorFlow dataset

c2pa.types.model AI/ML model which is not described by any other model type

c2pa.types.model.jax JAX model

c2pa.types.model.keras Keras model

c2pa.types.model.ml_net ML.NET model

c2pa.types.model.mxnet MXNet model

c2pa.types.model.onnx ONNX model

c2pa.types.model.openvino.parameter OpenVINO model parameter

c2pa.types.model.openvino.topology OpenVINO model topology

c2pa.types.model.pytorch PyTorch model

c2pa.types.model.tensorflow TensorFlow model

c2pa.types.numpy Stored using the serialized NumPy format

c2pa.types.protobuf Stored using the Protocol Buffer format

c2pa.types.pickle Stored using the Python pickle format
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C2PA Type Description of C2PA Type of the Asset

c2pa.types.savedmodel Stored using the TensorFlow SavedModel format

19.20.1. Schema and Example

The schema for this type is defined by the asset-types rule in the following CDDL Definition:

; The asset type assertion provides a way to more completely describe an asset 
; specifically additional context on how to parse or otherwise process it
; when its dc:format is insufficient. 
; It can also be used to describe externally referenced or related assets such as AI/ML
models.

$type-choice /= "c2pa.types.classifier"
$type-choice /= "c2pa.types.cluster"
$type-choice /= "c2pa.types.dataset"
$type-choice /= "c2pa.types.dataset.jax"
$type-choice /= "c2pa.types.dataset.keras"
$type-choice /= "c2pa.types.dataset.ml_net"
$type-choice /= "c2pa.types.dataset.mxnet"
$type-choice /= "c2pa.types.dataset.onnx"
$type-choice /= "c2pa.types.dataset.openvino"
$type-choice /= "c2pa.types.dataset.pytorch"
$type-choice /= "c2pa.types.dataset.tensorflow"
$type-choice /= "c2pa.types.format.numpy"
$type-choice /= "c2pa.types.format.protobuf"
$type-choice /= "c2pa.types.format.pickle"
$type-choice /= "c2pa.types.generator"
$type-choice /= "c2pa.types.generator.prompt"
$type-choice /= "c2pa.types.generator.seed"
$type-choice /= "c2pa.types.model"
$type-choice /= "c2pa.types.model.jax"
$type-choice /= "c2pa.types.model.keras"
$type-choice /= "c2pa.types.model.ml_net"
$type-choice /= "c2pa.types.model.mxnet"
$type-choice /= "c2pa.types.model.onnx"
$type-choice /= "c2pa.types.model.openvino"
$type-choice /= "c2pa.types.model.openvino.parameter"
$type-choice /= "c2pa.types.model.openvino.topology"
$type-choice /= "c2pa.types.model.pytorch"
$type-choice /= "c2pa.types.model.tensorflow"
$type-choice /= "c2pa.types.regressor"
$type-choice /= "c2pa.types.tensorflow.hubmodule"
$type-choice /= "c2pa.types.tensorflow.savedmodel"
$type-choice /= tstr .regexp "([\\da-zA-Z_-]+\\.)+[\\da-zA-Z_-]+"

asset-type-map = {
  "type": $type-choice, ; one of the listed choices or a custom value
  ? "version": tstr .size (1..max-tstr-length) ; An optional string in the SemVer format
which specifies the version of the corresponding "type" field  
}

asset-types = {
  "types": [1* asset-type-map] ; An array of asset-type-map elements specifying a collection
of types related to the asset
  ? "metadata": $assertion-metadata-map ; additional information about the assertion
}
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An example in CBOR Diagnostic Format (.cbordiag) is shown below. In this example, the asset is a TensorFlow
model file of version 2.11.0 which is stored in the SavedModel format.

{
  "types":
  [
    {
      "type": "c2pa.types.model.tensorflow",
      "version": "2.11.0"
    },
    {
      "type": "c2pa.types.savedmodel",
      "version": "2.11.0"
    }
  ]
}

19.20.2. Details on selection of a value for type

If an asset’s exact type is specified in the IANA registry application type or IANA registry text type, including JSON, CSV,
and XML types, this information shall be included in the claim’s dc:format field.

For example, if the asset is a CSV formatted text file, the dc:format field would be text/csv.

These existing Dublin Core formats are not specified as C2PA standard asset type assertion types, but an asset type
assertion may be included to provide additional information about the asset’s type. Some existing Dublin Core types
that are commonly used in a Claim with an asset type assertion are specified in the following table.

dc:format Value Description of Dublin Core Type of the Asset

application/json Stored using the JSON format

application/gzip Stored using the GZIP format

application/vnd.rar Stored using the RAR format

application/zip Stored using the ZIP format

application/octet-stream Stored using an arbitrary binary format

text/csv Stored using the CSV format

text/plain Stored using the plain text format

text/tab-separated-values Stored using the tab-separated-values (TSV) text format

text/xml Stored using the XML format

IANA structured suffixes, such as +json and +zip, are also supported in the C2PA Claim’s dc:format field to
specify additional types.
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Some dc:format types are commonly used but are not specified in the IANA registry. The following dc:format
values are valid for C2PA assets.

dc:format Value Description of Dublin Core Type of the Asset

application/x-hdf5 Stored using the HDF5 format

application/x-7z-compressed Stored using the 7Z format

19.21. Training and Data Mining
This assertion is used to provide a Manifest Consumer information about whether the asset may be used as part of a
data mining or AI/ML training workflow. This is expressed in the assertion through a map of one or more training-
mining-entries. Each entry describes whether its use is allowed, notAllowed or constrained.

There are four pre-defined entries:

c2pa.data_mining

Can any text or data content be extracted from the asset for purposes of determining "patterns, trends and
correlations".

NOTE This would include images containing text, where the text could be extracted via OCR.

c2pa.ai_inference

Can the asset be used as input to a trained AI/ML model for the purposes of inferring a result.

c2pa.ai_generative_training

Can the asset be used as training data to an AI/ML model that could produce derivative assets?

c2pa.ai_training

Can the asset be used as data to train non-generative AI/ML models, such as those used for classification, object
detection, etc.

NOTE
c2pa.ai_generative_training and c2pa.ai_training are separate values because
generative AI training enables derivative assets to be created from training assets, while other types,
such as object detection, do not.

In addition to the pre-defined entries, a claim generator may also add their own custom keys, provided that they
conform to the same syntax as custom labels.

The value of constrained implies that permission is not unconditionally granted for this usage. Consumers of this
content that wish to use the content in this way may wish to contact the rightsholder/author/signer to get more info
or obtain permission. In the absence of additional information, constrained shall be treated as equivalent to
notAllowed. More details on the constraints may be provided in the constraints_info text field.
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NOTE
Some possible things that could be put into constraints_info include a well-known description
of a license (e.g., Creative Commons), a URL to a policy file, or just some free text.

A Training and Data Mining Assertion shall have a label of c2pa.training-mining.

19.21.1. Schema and Example

The CDDL Definition for this type is:

; Assertion for specifying whether the associated asset and its data
; may be used for training an AI/ML model or mined for its data (or both).

; Possible values
$training-mining-choice /=  "allowed"
$training-mining-choice /=  "notAllowed"
$training-mining-choice /=  "constrained"

; Description of the data structure
training-mining-map-entry = {
    "use" : $training-mining-choice,
    ? "constraint_info" : tstr .size (1..max-tstr-length) ; information about the use of
`constrained`
}

training-mining-map = {
    ? "c2pa.data_mining"                : $training-mining-map-entry,       
    ? "c2pa.ai_inference"               : $training-mining-map-entry,       
    ? "c2pa.ai_training"                : $training-mining-map-entry,       
    ? "c2pa.ai_generative_training"     : $training-mining-map-entry,
    * tstr => any   ; allow for any other custom use case
    ? "metadata": $assertion-metadata-map       ; additional information about the assertion
}

An example in CBOR Diagnostic Format (.cbordiag) is shown below:

{
  "entries":
    "c2pa.ai_training" : {
        "use" : "allowed"
    },
    "c2pa.ai_generative_training" : {
        "use" : "notAllowed"
    },
    "c2pa.data_mining" : {
        "use" : "constrained",
        "constraint_info" : "may only be mined on days whose names end in 'y'"
    }
}
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Chapter 20. Open Topics
There are a number of open topics that have not yet been addressed in this specification. They are briefly described
below, organized by the relevant section of the specification.

20.1. Assertions
• Support for marking a previous claim or assertion as "retracted", a feature commonly used in the news

publication industry.

20.2. Binding to Content
• Add support for the binding of live video streams, 3D formats and audio formats.

• Addressing the case where servers make real-time modifications to content streamed to a client, potentially
altering the cryptographic hash used to bind ISO BMFF content to a manifest.

• Determining whether the box exclusion list used for hashing a BMFF-formatted asset in the fragmented MP4 case
needs to support having each fragment have its own exclusion list (e.g. if the subset to hash must be fragment-
specific).

20.3. Trust Model
• Supporting additional credential types for use in signing manifests.

20.4. Validation
• Design for how a video player can communicate with the media validator to indicate that a discontinuity in video

playback is expected, perhaps due to seek, fast forward, or other types of "trick play".

20.5. User Experience
• Working with the W3C and browser vendors to define a standardized model for exposing the provenance data to

user agents.
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Chapter 21. Patent Policy
The C2PA has adopted an open standard patent policy via W3C’s Patent Mode (2004):

Licensing Commitment. For materials other than source code or datasets developed by the Working Group, each
Working Group Participant agrees to make available any of its Essential Claims, as defined in the W3C Patent Policy
(available at http://www.w3.org/Consortium/Patent-Policy-20040205), under the W3C RF licensing requirements
Section 5 (http://www.w3.org/Consortium/Patent-Policy-20040205), in Approved Deliverables adopted by that
Working Group as if that Approved Deliverable was a W3C Recommendation. Source code developed by the Working
Group is subject to the license set forth in the Working Group charter.

For Exclusion. Prior to the adoption of a Draft Deliverable as an Approved Deliverable, a Working Group Participant
may exclude Essential Claims from its licensing commitments under this agreement by providing written notice of
that intent to the Working Group chair (“Exclusion Notice”). The Exclusion Notice for issued patents and published
applications must include the patent number(s) or title and application number(s), as the case may be, for each of the
issued patent(s) or pending patent application(s) that the Working Group Participant wishes to exclude from the
licensing commitment set forth in Section 1 of this patent policy. If an issued patent or pending patent application
that may contain Essential Claims is not set forth in the Exclusion Notice, those Essential Claims shall continue to be
subject to the licensing commitments under this agreement. The Exclusion Notice for unpublished patent
applications must provide either: (i) the text of the filed application; or (ii) identification of the specific part(s) of the
Draft Deliverable whose implementation makes the excluded claim an Essential Claim. If (ii) is chosen, the effect of
the exclusion will be limited to the identified part(s) of the Draft Deliverable. The Working Group Chair will publish
Exclusion Notices.
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