(®

Coalition for
Content Provenance
and Authenticity

1.0, 2021-12-21: Release

Table of Contents

1. Introduction
1.1. Overview
1.2. Scope
1.3. Technical Overview
1.4. Establishing Trust
1.5. An Example
1.6. Design Goals
2. Glossary
2.1. Introductory terms
2.2. Assets and Content
2.3. Core Aspects of C2PA
2.4. Additional Terms
2.5. Overview
3. Normative References
3.1. Core Formats
3.2. Schemas
3.3. Digital & Electronic Signatures
3.4. Other
4. Standard Terms
5. Assertions
5.1. General
5.2. Labels
5.3. Versioning
5.4. Multiple Instances
5.5. Assertion Store
5.6. Embedded vs Externally-Stored Data
5.7. Redaction of Assertions
6. Unique Identifiers
6.1. Using XMP
6.2. Other Identifiers
6.3. URI References
7. W3C Verifiable Credentials
7.1. General
7.2. VCStore

o N N N U D> DO

RN NN R R R R R RRERERRRRRRRBRBRRBRB R
W N N 00 00 00 00 N OO0 o oo o o1 o1 o D W DD DD M DN — O

7.3. Using Credentials
7.4. Credential Security Considerations
8. Binding to Content
8.1. Overview
8.2. Hard Bindings
8.3. Soft Bindings
9. Claims
9.1. Overview
9.2. Syntax
9.3. Creating a Claim
9.4. Multiple Step Processing
10. Manifests
10.1. Use of JUMBF
10.2. Types of Manifests
10.3. Embedding manifests into assets
10.4. External Manifests
10.5. Embedding a Reference to the Active Manifest
11. Entity Diagram
12. Cryptography
12.1. Hashing
12.2. Digital Signatures
13. Trust Model
13.1. Overview
13.2. Identity of Signers
13.3. Signer Credential Trust
13.4. Credential Types
13.5. Identity In Assertions
13.6. Statements
14. Validation
14.1. Locating the Active Manifest
14.2. Locating the Claim
14.3. Validate the Signature
14.4. Validate the Time-Stamp
14.5. Validate the Credential Revocation Information
14.6. Validate the Assertions
14.7. Recursively Validating Integrity of Ingredients
14.8. Visual look of Validation

24
24
25
25
25
27
29
29
29
31
35
38
38
A2
43
52
53
54
55
55
56
59
59
59
60
60
67
67
68
68
69
69
70
0
71
a3
75

14.9. Validate the AssetOs Content
15. User Experience

15.1. Approach

15.2. Principles

15.3. Disclosure Levels

15.4. Public Review, Feedback and Evolution
16. Information security

16.1. Threats and Security Considerations

16.2. Harms, Misuse, and Abuse
17. C2PA Standard Assertions

17.1. Introduction

17.2. Use of CBOR

17.3. Metadata About Assertions

17.4. Standard C2PA Assertion Summary

17.5. Data Hash

17.6. BMFF-Based Hash

17.7. Soft Binding

17.8. Cloud Data

17.9. Thumbnail

17.10. Actions

17.11. Ingredient

17.12. Depthmap

17.13. Exif Information

17.14. IPTC Photo Metadata

17.15. Use of Schema.org

17.16. Common Data Model: Actor
18. Open Topics

18.1.Assertions

18.2.Binding to Content

18.3.Trust Model

18.4.Validation

18.5.User Experience

19. Patent Policy

/6
8
8
8
78
79
80
80
81
83
83
83
84
91
92
94
99
101
103
103
107
113
115
116
118
124
126
126
126
126
126
126
127

Ot

This work is licensed under @reative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 1. Introduction

1.1. Overview

With the increasing velocity of digital content and the increasing availability of powerful creation and editing
techniques, establishing the provenance of media is critical to ensure transparency, understanding, and ultimately,
trust.

We are witnessing extraordinary challenges to trust in media. As social platforms amplify the reach and influence of
certain content via ever more complex and opaque algorithms, mis-attributed and mis-contextualized content
spreads quickly. Whether inadvertent misinformation or deliberate deception via disinformation, inauthentic content

is on the rise.

Currently, creators who wish to include metadata about their work (for example, authorship) cannot do so in a secure,
tamper-evident and standardized way across platforms. Without this attribution information, publishers and
consumers lack critical context for determining the authenticity of media.

Provenance empowers content creators and editors, regardless of their geographic location or degree of access to
technology, to disclose information about who created or changed an asset, what was changed and how it was
changed. Content with provenance provides indicators of authenticity so that consumers can have awareness of who
has altered content and what exactly has been changed. This ability to provide provenance for creators, publishers
and consumers is essential to facilitating trust online.

To address this issue at scale for publishers, creators and consumers, the Coalition for Content Provenance and
Authenticity (C2PA) has developed this technical specification for providing content provenance and authenticity. It is
designed to enable global, opt-in, adoption of digital provenance techniques through the creation of a rich ecosystem
of digital provenance enabled applications for a wide range of individuals and organizations while meeting
appropriate security requirements.

This specification has been, and continues to be, informed by scenarios, workflows and requirements gathered from
industry experts and partner organizations, including th€roject Origin Allianceand the Content Authenticity
Initiative (CAl) It is also possible that regulatory bodies and governmental agencies could utilize this specification to
establish standards for digital provenance.

1.2. Scope

This specification describes the technical aspects of the C2PA architecture; a model for storing and accessing
cryptographically verifiable information whose trustworthiness can be assessed based on a defined model.
Included in this document is information about how to create and process a C2PA Manifest and its components,
including the use of digital signature technology for enabling tamper-evidence as well as establishing trust.

Prior to developing this specification, the C2PA created ¢uriding Principlesthat enabled us to remain focused on
ensuring that the specification can be used in ways that respect privacy and personal control of data with a critical

https://www.originproject.info/
https://contentauthenticity.org/
https://contentauthenticity.org/
https://c2pa.org/principles/

eye toward potential abuse and misuse. For example, the creators and publishers of the media assets always have
control over whether provenance data is included as well as what specific pieces of data are included.

From the overarching goals section of the guiding principles:

C2PA specifications SHOULD NOT provide value judgments about
IMPORTANT whether a given set of provenance data is 'good' or 'bad,” merely

whether the assertions included within can be validated as associated

with the underlying asset, correctly formed, and free from tampering.

It is important that the specification does not negatively impact content accessibility for consumers.

Other documents from the C2PA will address specific implementation considerations such as expected user
experiences and details of our threat and harms modelling.

1.3. Technical Overview

The C2PA information comprises a series of statements that cover areas such as asset creation, authorship, edit
actions, capture device details, bindings to content and many other subjects. These statements, caledrtions

make up the provenance of a given asset and represent a series of trust signals that can be used by a human to
improve their view of trustworthiness concerning the asset. Assertions are wrapped up with additional information
into adigitally signedentity called aClaim.

The W3C Verifiable Credentiatf individual actors that are involved in the creation of the assertions can be added to
the C2PA information to provide additional trust signals to the process of assessing trustworthiness of the asset.

These assertions, claims, credentials and signatures are all bound together into a verifiable unit calledPa\
Manifestby a hardware or software component called a Claim Generator. The set of C2PA Manifests, as stored in the
assetOs C2PA Manifest Store, represent its provenance data.

https://www.w3.org/TR/vc-data-model

C2PA Manifest

Claim Signature

Claim

Assertions

Figure 1. A C2PA Manifest and its constituent parts

1.4. Establishing Trust

The basis of making trust decisions in C2PA, duust Mode) is the identity of the actor associated with the
cryptographic signing key used to sign the claim in the Active Manifest. The identity of a signatory is not necessarily a
human actor, and the identity presented may be a pseudonym, completely anonymous, or pertain to a service or
trusted hardware device with its own identity, including an application running inside such a service or trusted
hardware. C2PA Manifests can be validated indefinitely regardless of whether the cryptographic credentials used to
sign its contents are later expired or revoked.

1.5. An Example

A very common scenario will be a user (called an actor in the C2PA ecosystem) taking a photograph with their C2PA-
enabled camera (or phone). In that instance, the camera would create a manifest containing some such assertions
including information about the camera itself, a thumbnail of the image and some cryptographic hashes that bind the
photograph to the manifest. These assertions would then be listed in the Claim, which would be digitally signed and
then the entire manifest would be embedded into the output JPEG. This manifest would remain valid indefinitely.

Manifest Store

Manifest

Claim Signature
COSE Digital Signaturg

Claim

“ CBOR structure with references
to the Assertions and the Claim Signature

Assertion Store

stds.exif

“ JSON-LD structure with details of|
the camera used to take the photd
and it's GPS location.

c2pa.thumbnail.claim.jpg
N Binary Image Data

c2pa.hash.data

CBOR structure containing
information about the
cryptographic hashes binding
to the content.

Figure 2. Example C2PA Manifest of a Photograph

A Manifest Consumer, such as a C2PA Validator, could help users to establish the trustworthiness of the asset by first
validating the digital signature and its associated credential. It can also check each of the assertions for validity and
present the information contained in them, and the signature, to the user in a way that they can then make an
informed decision about the trustworthiness of the digital content.

1.6. Design Goals

In the creation of the C2PA architecture, it was important to establish some clear goals for the work to ensure that the
technology was usable across a wide spectrum of hardware and software implementations worldwide and accessible
to all.

Some of those goals were:
¥ Maintain the provenance of the asset across multiple tools, from creation through all subsequent modification

and publication/distribution.

¥ Support all standard asset formats supported by common authoring tools, across media types such as images,
videos, audio, and documents.

¥ Create only the minimum required novel technology by relying on well-established techniques.
¥ Do not require cloud storage but allow for it.

¥ Allow flexibility in the nature of information stored.

¥ Allow for information to be subsequently redacted, provided that the author permits it.
¥ Take into consideration the needs of interested users throughout the world.

¥ Review specifications with a critical eye toward potential abuse and misuse of the framework.

Chapter 2. Glossary

2.1. Introductory terms

2.1.1. Actor

A human or non-human (hardware or software) that is participating in the C2PA ecosystem. For example: a camera
(capture device), image editing software, cloud service or the person using such tools.

NOTE An organization or group cdictors may also be considered aactor in the C2PA ecosystem.

2.1.2. Signer

Anactor (human or non-human) whose credentialOs private key is used to sigeldie. Thesigneris identified by the
subject of the credential.

2.1.3. Claim generator

The non-human (hardware or softwarg)ctor that generates theclaim about anassetas well as thelaim signature
thus leading to theassets associatednanifest

2.1.4. Manifest consumer

Anactor who consumes amssetwith an associatednanifestfor the purpose of obtaining th@rovenance datafrom
the manifest

2.1.5. Validator

Amanifest consumewhose role is to perform the actions described@napter 14\alidation

2.1.6. Action

An operation performed by aactor on anasset.For example, "create", "embed", or "apply filter".

2.2. Assets and Content

2.2.1. Digital content

The portion of anassetthat represents the actual content, such as the pixels of an image, along with any additional
technical metadata required to understand the content (e.g., a colour profile or encoding parameters).

2.2.2. Asset metadata

The portion of anassetthat represents non-technical information about thassetand itsdigital content as may be
stored via standards such as Exif or XMP.

2.2.3. Asset

A file or stream of data containindigital content asset metadataand optionally, aC2PA Manifest

For the purposes of this definition, we will extend the typical definition of “file” to include cloud-
native and dynamically generated data.

NOTE

2.2.4. Derived asset
Aderived assets anassetthat is created by starting from an existiragsetand performingactionsto it that modify its

digital contentandasset metadata

EXAMPLEAN audio stream that has been shortened or a document where pages have been added.

2.2.5. Asset rendition

A representation of amsset(either as a part of aassetor a completely nevasse) where thedigital contenthas had a
‘non-editorial transformation’ action (e.g., re-encoding or scaling) applied but where thgset metadatahas not been
modified.

EXAMPLEA video file that is re-encoded for reduced screen resolution or network bandwidth.

2.2.6. Composed asset

A composed asset is aassetthat is created by building up a collection of multiple parts or fragments difital
content (referred to as ingredients) from one or more oth@&ssets When starting from an existingsset it is a special
case of alerived asset however a&omposed assetan also be one that starts from a "blank slate".

EXAMPLES:

¥ A video created by importing existing video clips and audio segments into a "blank slate".

¥ An image where another image is imported and super-imposed on top of the starting image.

2.3. Core Aspects of C2PA

2.3.1. Assertion

A data structure which represents a statement asserted byaator concerning theasset This data is a part of the
C2PA Manifest

2.3.2. Claim

A digitally signed and tamper-evident data structure that references a setas$ertionsby one or moreactors
concerning anasset and the information necessary to represent tloentent binding If anyassertionswere redacted,
then a declaration to that effect is included. This data is a part of G@PA Manifest

2.3.3. Claim signature

The digital signature on thelaim using the private key of aactor. Theclaim signatureis a part of theC2PA Manifest

2.3.4. C2PA Manifest

The set of information about theprovenanceof an asset based on the combination of one or morassertions
(including content binding$, a singleclaim, and aclaim signature AC2PA Manifess part of &C2PA Manifest Store

NOTE AC2PA Manifestan reference other _C2PA Manifest_s.

2.3.5. C2PA Manifest Store

A collection ofC2PA Manifesthat can either be embedded into amssetor be external to itasset
2.3.6. Origin
TheC2PA Manifesh theprovenance datavhich represents the software or device that initially created thgset

NOTE Details on how one determines whicB2PA Manifess theorigin are left for specification.

2.3.7. Active Manifest

The last manifest in the list dE2PA Manifestsside of aC2PA Manifest Storehich is the one with the set afontent
bindingsthat are able to be validated.

2.3.8. Provenance

The logical concept of understanding the history of assetand its interaction withactors and otherassets as
represented by theprovenance data

2.3.9. Provenance data

The set ofC2PA Manifest_s for an _asart, in the case of @omposed asseftsingredients

NOTE AC2PA Manifestan reference other _C2PA Manifest_s.

2.3.10. Authenticity

A property of digital content comprising a set of factsp(ovenance dataand hard bindingg that can be
cryptographically verified as not having been tampered with.

2.3.11. Content binding

Information that associatesligital contentto a specificC2PA Manifestssociated with a specifiasset either as aard
binding or asoft binding

2.3.12. Hard binding

One or more cryptographic hashes that uniquely identifies either the entissetor a portion thereof.

2.3.13. Soft binding

A content identifier that is either (a) not statistically unique, such argerprint, or (b) embedded as watermark in
the identified digital content

2.3.14. Trust signals

The collection of information that can inform aactorOgudgment of the trustworthiness of amsset These are in
addition to thesignerof aclaim, upon which the fundamental trust model relies.

2.4. Additional Terms

2.4.1. Fingerprint

A set of inherent properties computable frouligital contentthat identifies the content or near duplicates of it.

EXAMPLEAnassetcan become separated from itmanifestdue to removal or corruption odssetmetadata. A
fingerprint of the digital content of the assetcould be used to search a database to recover #Hesetwith an
intact manifest

10

2.4.2. Watermark

Information incorporated into thedigital content (perceptibly or imperceptibly) of arassetwhich can be used, for
example, to uniquely identify theassetor to store a reference to @2PA Manifest

2.4.3. Manifest Repository

A repository into whichC2PA Manifestand C2PA Manifest Storean be placed, and which can be searched using a
content binding

2.5. Overview

This image shows how all these various elements come together to represent the C2PA architecture.

Origin e
Provenance data @

Assertions @

Manifest

Active manifest

@ Claim signature

@ Content binding @
Provenance

Hard binding

Soft binding
(optional)

— @ Asset metadata

\/Z @ Digital content

Figure 3. Elements of C2PA

11

Chapter 3. Normative References

3.1. Core Formats

¥CBOR

¥JSON

¥JSON-LD

¥ JPEG universal metadata box form&@UMBF)

¥|SO Base Media File Form@MFF)

3.2. Schemas

¥ CDDL
¥ JSON Schema

¥ Dublin Core Metadata Initiative

3.3. Digital & Electronic Signatures

¥ X.509 Certificates

¥ JSON Web Algorithm@WA)

¥ CBOR Object Signing and Encrypti(@OSE)

¥ Using RSA Algorithms with COSE Messages

¥ Online Certificate Status ProtocdlOCSP)

¥Internet X.509 PKI Time-Stamp Protocol

¥ CBOR Object Signing and Encryption (COSE): Header parameters for carrying and referencing X.509 certificates

¥ Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile

¥Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers for DSA and ECDSA

¥ Algorithm Identifiers for Ed25519, Ed448, X25519, and X448 for Use in the Internet X.509 Public Key Infrastructure
¥PKCS #1: RSA Cryptography Specifications Version 2.2

¥ Edwards-Curve Digital Signature Algorithm (EdDSA)

¥ JSON Advanced Electronic Signatur€RAJES)

¥ US Secure Hash Algorithms

12

https://tools.ietf.org/html/rfc8949
https://tools.ietf.org/html/rfc8259
https://www.w3.org/TR/json-ld11/
https://www.iso.org/standard/73604.html
https://www.iso.org/standard/74428.html
https://datatracker.ietf.org/doc/html/rfc8610
https://json-schema.org/specification-links.html#2020-12
https://www.dublincore.org/specifications/dublin-core/dces/
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8230
https://tools.ietf.org/html/rfc6960
https://tools.ietf.org/html/rfc3161
https://datatracker.ietf.org/doc/draft-ietf-cose-x509/
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc5758
https://tools.ietf.org/html/rfc8410
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8032
https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010101p.pdf
https://datatracker.ietf.org/doc/html/rfc6234

3.4. Other

¥ eXtensible Metadata PlatforniXMP)
¥ JSON-LD serialization of XMP
¥|PTC Photo Metadata Standard

¥ Exif

¥UUID

13

https://www.iso.org/standard/75163.html
https://www.iso.org/standard/79384.html
http://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata
https://www.cipa.jp/std/documents/download_e.html?DC-008-Translation-2019-E
https://tools.ietf.org/html/rfc4122

Chapter 4. Standard Terms

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT'
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted a
described inBCP 14RFC 211%ndRFC 8174vhen they appear in any casing (upper, lower or mixed).

14

https://tools.ietf.org/html/bcp14
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc8174

Chapter 5. Assertions

5.1. General

It is expected that each of the actors in the system that creates or processes an asset will produce one or more
assertions about when, where, and how the asset was originated or transformed. An assertion is labelled data,
typically (though not required to be) in a CBOR-based structure which represents a declaration made by an actor
about an asset. Some of these actors will be human and add human-generated information (e.g., copyright) while
other actors are machines (software/hardware) providing the information they generated (e.g., camera type).

Some examples of assertions are:

¥ Exif information (e.g. camera information such as maker, lens)
¥ Actions performed on the asset (e.qg., clipping, color correction)
¥ Thumbnail of the asset or its ingredients

¥ Content bindings (e.g., cryptographic hashes)

Certain assertions may be redacted by subsequent claims (Seetion 5.7, ORedaction of Assertioyskut they
cannot be modified once made as part of a claim.

5.2. Labels

Each assertion has a label defined either by the C2PA specifications or an external entity.

Labels are string values organized into namespaces using a perigci$ a separator. The namespace component of

the label can be an entity, or a reference to a well-established standard (see ABNF below). The most common labels
will be defined by the C2PA and will begin wit2pa. . Entity-specific labels shall begin with the Internet domain
name for the entity similar to how Java packages are defined (eguBitware , net.fineartschool). Well-
established standards can use the "stds." prefix when describing their namespace. They are also versioned with a
simple incrementing integer scheme (e.g:2pa.actions.v2). If no version is provided, it is considered &k. The

list of publicly known labels can be found ibhapter 17C2PA Standard Assertions

namespaced-label = qualified-namespace label
qualified-namespace = entity / ("stds." std-name)
entity = 1*(DIGIT / ALPHA / "-")

std-name = 1*(DIGIT / ALPHA /"-")

label = 1*("." 1(ALPHA /" ") *(DIGIT / ALPHA /" "))

The period-separated components of a label follow the variable naming conventijenz@A-Z_][a-zA-Z0-9_]*)
specified in the POSIX or C locale, with the restriction that the use of a repeated underscore charactés (eserved
for labelling multiple assertions of the same type.

15

5.3. Versioning

When an assertionOs schema is changed, it should be done in a backwards-compatible manner. This means that new
fields may be added and existing ones may be marked as deprecated (i.e., can be read, but never written). Existing
fields shall not be removed. The label would then consist of an incremented version number, for example moving
from c2pa.ingredient to c2pa.ingredient.v2

Deprecated fields for C2PA standard assertions shall be indicate®limpter 17,C2PA Standard AssertioriBools
which enable actors to create assertions shall prevent the actor from inserting data into deprecated assertion fields.

In addition, there are situations where a non-backwards compatible change is required. In that case, instead of
increasing the labelOs version number, the assertion shall be given a new label. For exafpaléngredient
could be changed to the fictionat2pa.component

5.4. Multiple Instances

Multiple assertions of the same type can occur in the same manifest, but since assertions are referenced by claims via
their label, the assertion labels must be unique. This is accomplished by adding a double-underscore and a
monotonically increasing index to the label. For example, if a manifest contains a single assertion of type
stds.schema-org.CreativeWork , then the assertion label will betds.schema-org.CreativeWork .Ifa
manifest contains three assertions of this type, the labels will kds.schema-org.CreativeWork ,
stds.schema-org.CreativeWork__ 1 andstds.schema-org.CreativeWork__ 2

When a label includes a version number, that version number is part of the label itself. As such, when there are
multiple instances, the instance number continues to follow the label - ea@pa.ingredient.v2__ 2

5.5. Assertion Store

The set of assertions referenced byckim in a manifest are collected together into a logical construct that is referred

to as theassertion store The assertions and assertion store shall be stored as describefdation 10.1, OUse of
JUMBF@in particular, the assertion store shall be located in the same C2PA Manifest box as the claim that refers to its
assertions.

For each manifest, there is a single assertion store associated with it. However, as an asset may have multiple
manifests associated with it, each one representing a specific series of assertions, there may be multiple assertion
stores associated with an asset.

5.6. Embedded vs Externally-Stored Data

Some assertion data, due to its size or an infrequent need for it, may be externally hosted. Such data are not
embedded in the assertion store, but instead are referenced by URI. Unlike embedded assertions, external assertions
are not retrieved nor validated as part of manifest validation, and are only retrieved and validated when specifically
needed by an application. This is accomplished through a cloud data assertion eion 17.8, OCloud Da)a@nd

16

the different validation rules are described iBection 14.6, OValidate the AssertionsO

5.7. Redaction of Assertions

Assertions that are present in an asset-embedded manifest may be removed from that assetOs manifest when the
asset isused as an ingredientThis process is called redaction.

Redaction involves removing either the entire assertion from the manifestOs assertion store or retaining the labelled
assertion container but replacing its data with zeros (binaXy values). In addition, a record that something was
removed must be added to theclaim in the form of aURI referenceto the redaction assertion in the
redacted_assertions field of the claim.

Because each assertionO®&I| referencencludes the assertion label, it is also known what type of
NOTE information (e.g., thumbnail, IPTC metadata, etc.) was removed. This enables both humans and
machines to apply rules to determine if the removal was acceptable.

Unless the redaction of the assertion also requires modification to the digital content,uadate manifestshall be
used to document the redaction as it makes a statement about the non-changes to the content.

Claims generators shall not redact assertions with a label a@jpa.actions as this assertion type represents
essential information in understanding the history of an asset.

17

Chapter 6. Unique Identifiers

Every asset that is referenced by tl&im shall be referenced via a unique identifier. In addition, these identifiers are
used in various parts of a C2PA-enabled workflow, such as when identifying it asicandient in a derived or
composed asset.

6.1. Using XMP

When an asset contains embedded XMP, that XMP shall include (at least) valugspdiM:DocumentlD and
xmpMM:InstancelD as defined inKMP Specification Part 2, 2. an asset does not contain XMP at the time a claim

is made, and the type of the asset supports it, an embedded XMP packet may be created as part of the process, and
the identifiers shall be added to it.

NOTE 1

NOTE Some asset types are not suited for embedded XMP (e.g., text). It is possible to create XMP as a
sidecar.

6.2. Other Identifiers

Instead of using XMP, a unique identifier for an asset could be a URI defined by standards sihelteagralized
Identifiers (DID)Handle, EIDRand DOl

Another standard unique identifier for an asset could be the cryptographic hash of the asset. When this method is
used, the hash shall be represented using a standard-C 4122 UUIDollowing the recommendations at
https://datatracker.ietf.org/doc/html/draft-thiemann-hash-urn-01.

EDITORS NOTE
NOTE _
Other methods may be defined here as they are developed.

6.3. URI References

Assertions and claims, whether they are stored internally to the asset (i.e., embedded) or stored externally to the asset
(e.g., in the cloud), shall be referenced via JUMBF URI references as defited il9566-5, C.This URI shall be used
as part of ehashed_uri data structure:

18

https://wwwimages2.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMP%20SDK%20Release%20cc-2014-12/XMPSpecificationPart2.pdf
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
http://www.handle.net/
https://www.eidr.org/
https://www.doi.org/
https://tools.ietf.org/html/rfc4122
https://datatracker.ietf.org/doc/html/draft-thiemann-hash-urn-01
https://www.iso.org/standard/73604.html

"$schema" : "http://json-schema.org/draft-07/schema” ,
"$id" : "http://ns.c2pa.org/hashed-uri/v1" ,
"type" : "object" ,
"description” : "The data structure used to store a reference to a local URL and its hash"
"definitions" |
"JUMBF_URI": {
"$id" : "#IJUMBF_URI",
"description” : "JUMBF URI reference" ,
"type" : 'string" ,
"pattern” : "“self#jumbf=[\W\wAL d)f W\ wAL dW -] WA\ d]$”
}
h

"examples" : [

{
"url" : "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
29BF39FA1E4/c2pa.assertions/c2pa.actions” ,
"alg" : "sha256" ,
"hash" : "hoOspQQ1IFTy/4Tp8Epx670E5QW5NWKNR+2b30KFXug="

}
1,
"required" : ["url® , "hash"],
"properties" c |
“url* o {
"$ref" : "#/definitions/JUMBF_URI" ,
"description” : "JUMBF URI reference"
Ji-
"alg" : {
"type" : ‘"string"
"minLength” : 1,
"description” : "A string identifying the cryptographic hash algorithm used to compute
all hashes in this claim, taken from the C2PA hash algorithm identifier list. If this field
is absent, the hash algorithm is taken from an enclosing structure as defined by that
structure. If both are present, the field in this structure is used. If no value is present
in any of these places, this structure is invalid; there is no default."

T [T [T [T T [T [T T T [T [T T [T [T W [Th [T [T [T [T [Th [Th [T [T [T [T [T [Th [T M~

E }

E "hash" : {

E "type" : "string"

E "minLength" : 1,

E "description” : "CBOR byte string containing the hash value"
E 1}

E}

E "additionalProperties" . false

}

This specification provides an equivalehtashed-uri-map data structure for schemas defined usirigD DL

19

https://datatracker.ietf.org/doc/html/rfc8610

; The data structure used to store a reference to a URL within the same JUMBF and its hash.
We use a socket/plug here to allow hashed-uri-map to be used in individual files without
having the map defined in the same file

$hashed-uri-map /= {

E "url": url-regexp-type, ; JUMBF URI reference

E ? "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute all hashes in this claim, taken from the C2PA hash algorithm
identifier list. If this field is absent, the hash algorithm is taken from an enclosing
structure as defined by that structure. If both are present, the field in this structure is
used. If no value is present in any of these places, this structure is invalid; there is no
default.

E "hash": bstr, ; byte string containing the hash value

}

; with CBOR Head (#) and tail ($) are introduced in regexp, so not needed explicitly
url-regexp-type /= tstr .regexp "self#jumbf=[\\w\d]\wA\d\.V:-]+[\w\\d]"

Because assertion stores shall be located in the same C2PA Manifest box as the claim that refers to them, only
self#jumbf URIs are permitted. Thesself#umbf URIs may be relative to the entire C2PA Manifest Store, in
which case they shall start with & (U+002F, Slash), or relative to the current C2PA Manifest. URIs shall not contain the
sequence.. (a pair of U+002E, Full Stop).

Cloud data assertions use a different schema for URIs which is describé&tkition 17.8, OCloud

NOTE .
DataO

EXAMPLES:

¥ self#jumbf=/c2pa/urn:uuid:f095f30e-6¢cd5-4bf7-8c44-
ce8420ca9fb7/c2pa.assertions/c2pa.thumbnail.claim.jpeg is relative to the entire store (since
it starts with/),

¥ self#jumbf=c2pa.assertions/c2pa.thumbnail.claim.jpeg would be relative to the manifest of
the box containing the URI.

6.3.1. Hashing Assertions

When creating a URI reference to an assertion (i.e., as part of constructitigial), the hash shall be performed over
the contents of the assertionOs JUMBF superbox, which includes both the JUMBF Description Box and all content
boxes therein (but does not include the assertionOs JUMBF superbox header).

As described in the forthcoming JUMBF AMD-2, a Reiwate field (in the form of a JUMBF box) can be present as
part of any JUMBF Description box. This C2PA specification defines the C2PA sd#ltiasta field consisting of a
standard JUMBF box with a TBox valuec@kh (for C2PA salt hash) and its payload data being randomly-generated
binary data of at least 16 bytes in length.

20

JUMBF Superbox ('jumb’)

JUMBF Description Box ("jumd')

TYPE cbor
TOGGLES 00010011
LABEL c2pa.actions

PRIVATE (c2sh’)

16 or 32 bytes of arbitrary binary data (salt)

JUMBF Content Box ('cbor’)

CBOR data for actions-map

Figure 4. Example2pa.actions assertion

21

Chapter 7. W3C Verifiable Credentials

7.1. General

In some use cases, the actors in the system may wish to provide their\6i8@ Verifiable Credentiaas they exist at
that moment in time, to the claim generator to have them associated with one or more assertions. These actors may
be individuals, groups or organizations.

WS3C Verifiable Credentials are used in this specification to decorate the actors identified in assertions with more
information, potentially providing additional trust signals. Although these W3C Verifiable Credentials can include
proofs of their own authenticity, they ar@mot a mechanism for verifying that a particular actor authorised a claim,
assertion or piece of metadata. Any validation or usage of the W3C Verifiable Credential is out of scope of this
specification and has no bearing on the2PA Trust Model

For example, conveying a W3C Verifiable Credential for the actor identified aautier in an assertion might link
that authorOs ID with an email address, social media ID, or real name, or it might identify that actor as a member of a
particular professional body, or provide other qualifications relevant to the actorOs involvement in the asset.

Such credentials shall be compliant with thé/3C Verifiable Credentials Data Modksing theJSON-LD serialisation
described there.

JSON-LD serialization is mandated as it is the most commonly used of the three syntaxes presented
NOTE in section 6 of the W3C Verifiable Credentials specification. It is also the one that aligns best with its
extensibility model, which could be useful to some implementers.

An example of a compliant credential for an individual might be one issued by the National Press Photographers

Association (NPPA), which links an identifier for a person to their name ("John Doe") and a statement about their
membership of the NPPA. It might look like:

22

https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/#json-ld

~

E "@context" : [

E "https://www.w3.0rg/2018/credentials/v1" ,
E "http://schema.org"

E1l

E "type" : [

E "VerifiableCredential ,

E "NPPACredential"

E1l

E "issuer" : "https://nppa.org/" ,

E "credentialSubject" c

E "id" : "did:nppa:eb1bb9934d9896a374c384521410c7f14" ,
E "name": "John Doe" |,

E "memberOf' : "https://nppa.org/"

E},

E "proof* : {

E “"type" : "RsaSignature2018"

E "created" : "2021-06-18T21:19:10Z" ,

E "proofPurpose" : "assertionMethod" ,

E “verificationMethod"

d

"did:nppa:eb1bb9934d9896a374c384521410c7f14# QqOUL2Fg651QO0Fjd6TvnYE-faHIOpRIPVQCY_-tA4A"
"jws" : "eyJhbGciOiJQUzI1NilsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjYO0ll19
DJBMvVFAICO0NSGB6TNOXKbbFIXrsaJZREWVR2aONY TQQxnyXirtXnlewJMB
Bn2h9hfcGZrvnC1b6PgWmukzFJ1liIH1dWgnDIS81BH-IxXnPkbuYDeySorc4
QUIMIXdVKY5ELAHYbclfwKj6X4LBQ2_ZHZluljdgqLcRZgHcsDF5KKyIKc1TH
n5VRWyY5WhYg_gBnyWny8E6Qkrze53MR7OuAMmMNJI1m1nN8SxDrG6a08L78J0-
Fbas50jAQz3c17GY8mVuDPOBIOV|MEghBIgI3nOilysxbRGhHLEK4sO0KKbeR
00Zdgt1DkQxDFxxn41QWDw_mmMCjs9qgxg0zcZzqEJIw"

S~ [Tp [T [T [T [T [T [T [Th

A W3C Verifiable Credential used with C2PA shall contain only a siogléentialSubject and that
credentialSubject shall have and value.

Although the example above and many examples in the W3C Verifiable Credentials data model
specification use Decentralized Identifiers (DIDs) as the value ofidhdield, DIDs are not necessary

for W3C Verifiable Credentials to be useful. Specifically, W3C Verifiable Credentials do not depend on
DIDs and DIDs do not depend on W3C Verifiable Credentials. DID-based URLs are just one way to
express identifiers associated with subjects, issuers, holders, credential status lists, cryptographic
keys, and other machine-readable information associated with a W3C Verifiable Credential.

NOTE

7.2. VVCStore

The set of credentials in a manifest are collected together into a logical construct that is referred to agedential
store or VCStore (for short) and it shall be stored as describedSection 10.1, OUse of JUMBB@like the assertion
store, the VCStore shall always be included in the JUMBF - it shall not be stored separately.

For each manifest, there is a VCStore associated with it. However, as an asset may have multiple manifests associated
with it, there may be multiple VCStores associated with an asset.

23

7.3. Using Credentials

Some assertions, such &sreative Workand Actions may contain references to Persons or Organisations which are
responsible for various roles and responsibilities. These references to Actors are definddion 17.16, OCommon
Data Model: ActorO

{

E "@context" : "http://schema.org/"

E "@type" : "CreativeWork"

E "copyrightHolder" {

E "name": "BBC",

E "legalName" : "British Broadcasting Corporation" ,

E "identifier" : "https://www.bbc.co.uk/" ,

E “credential" |

E {

E "url* : "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.credentials/https://www.bbc.co.uk/" ,

E "alg" : "sha256" |,

E "hash" : "Auxjtmax46cC2N3Y9aFmBO9Jfay8LEwWJWzBUtZOSUM8gA"
E }

E]

E}

E "copyrightYear" . 2021,

E "copyrightNotice" : "Copyright © 2021 BBC."

}

7.4. Credential Security Considerations

In most W3C Verifiable Credential workflows, the information about the subject (e.g., the cryptographic keys) is
fetched on demand at the time of validation. While that is an acceptable model, it does open up a possible attack
vector by providing an attacker with an externally-visible signal about what the validator is validating. Therefore,
C2PA also supports having the information captured and embedded at the time of signature. This not only prevents
leakage, but also makes it very clear what data the signer is asserting about the credentialOs subject.

24

Chapter 8. Binding to Content

8.1. Overview

A key aspect to thetandard C2PA manifeds the presence of one or more data structures, called content bindings,
that can uniquely identify portions of the asset. There are two types of bindings that are supported by C2PA - hard
bindings and soft bindings. A hard binding (also known as a cryptographic binding) enables the validator to ensure
that (a) this manifest belongs with this asset and (b) that the asset has not been modified, by determining values that
can match only this asset and no other, not even other assets derived from it or renditions produced from it. A soft
binding is computed from the digital content of an asset, rather than its raw bits. A soft binding is useful for identifying
derived assets and asset renditions.

8.2. Hard Bindings

8.2.1. Hashing using byte ranges

The simplest type of hard binding that can be used to detect tampering is a cryptographic hashing algorithm, as
described inSection 12.1, OHashingaver some or all of the bytes of an asset. This approach can be used on any type
of asset.

When using this form of hard binding, one or mateta hash assertionds used to define the range of bytes that are
hashed (and those that are not). Because each data hash assertion defines a byte range and optional URL, it is flexible
enough to be usable whether the asset is a single binary or represented in multiple chunks or portions, local or
remote.

8.2.2. Hashing a BMFF-formatted asset

If the asset is based of5O BMFRhen a hard binding optimized for the box-based format (calléd/FF-based hash
assertion9 may be used instead.

For a monolithic MP4 file asset where thedat box is validated as a unit, the assertion is validated nearly identically
to a data hash assertion. It simply uses a box exclusion list instead of byte ranges to define the range of bytes that are
hashed (and those that are not).

For a monolithic MP4 file asset where thedat box is validated piecemeal or an asset composed of fragmented MP4
files, the assertion itself must be combined with chunk-specific hashing information which is located as specified in
Section 10.3.2, OEmbedding manifests into BMFF-based as¢atidating a given chunk requires first validating the
merkle fieldO#itHash over the corresponding initialization segment and then locating the correct entry in the
merkle fieldOsashes array and validating it against the hash of the chunkOs data plus (if needed) deriving the hash
using the otherhashes specified in the chunkOs C2PA-specific box.

25

https://www.iso.org/standard/74428.html

Track #n Initialization Segment Track #n Trackn+l Trackn+2

. L] L]
c2pa box . o o
L4 . .

string box_purpose = manifest |

bit (8) data = Track Chunk m+1 |

Track Chunk| Track Chunk|

To verify track chunk m+3 you must first compare/verify the Track Chunk Track Chunk

| Track Chunk m+2 | | Track Chunk| | Track Chunk|

corresponding initialization segment. Track Chunk m+3
The c2pa box in each Track’s initialization segment
T é"aly of Merkle rows will contain the Manifest (which must be identical Track Ch“”k| Track Chunk|
xi usions(] across tracks). The Manifest's c2pa.bmff.hash H
+ alg assertion will contain CBOR with an array of merkle c
« hash® rows, one per track. c2pa box

CBOR Serialization Locate assertion & corresponding merkle row

string box_purpose = merkle

- from manifest using theuniqueld & localld . -
+ uniqueld member of the chunk c2pa box. (@) =
« localld
* initHash @ If the hash of the init segment usingalg &
« count (# leaf nodes) exclusions|[] equals the initHash stored
. alg* along side the merkle tree row you just .
« hashes[[* located, the initialization segment is verified.
Track #n Merkle Row e uniqueld
* localld
* The parametersalg & hash at the top level of the « location | Track Chunk m+4 |
manifest CBOR serialization are used for monolithic « hashes[]
MP4, whereasalg & hashes[] in the merkle tree row oot
objects are used for fragmented MP4. CBOR Serlallzatlcln Track Chunk m+5 |
L]
L]
L]

Figure 5. Validating the initialization segment

Track #n

- Track #n Initialization Segment .

D12 .

c {null) -

m n “ c2pa box ‘ Track Chunk m+1 ‘
| | | string box_purpose = manifest

M bit (B) data = ‘ Track Chunk m+2 ‘

Track Chunk m+3

The c2pa box in each Track's initialization segment will

contain the Manifest (which must be identical across + Array of Merkle tree rows @ Had the c2pa box CBOR serialization in the
tracks). The Manifest's c2pa.bmff.hash assertion will + Exclusions[] Track #n initialization segment only contained
contain CBOR with an array of merkle rows, one per . alg® Row 3 - D3,0 - then chunk m+3's hashes[]
track. We are looking at Track#n's merkle row, and in - array would also contain D2,1. Hash D2,0uiueq e
this first example it contains row 2 — D2,0 and D2,1. * hash with D21 to yield D3,04eryes c2pa box
CBOR Senalization
To complete verification of chunk m+3: If D3,0,c,eq = 03,0 as stored in the manifest's stringbox_purpose =merkle
+ unigueld merkle row hashes[] parameter, and the bit (8) data=
(@ Hash chunk m+3 using the exclusions] list « localld corresponding initialization segment was
and the merkle tree row object alg, yielding + initHash verified in step @, then chunk m+3 has been _
D0, 24eriveq- * count(#leafnodes) verified. A
. * .
(#) Chunk m+3's hashes(] array will contain the g - * uniqueld
hash of chunk m+4 {D0,3) and row one hash * hashes[] + localld
value D1,0. Track #n Merkle Row * location
* hashes[]
() HashD0.24..and D03 to vield D1, Tuerieq- * The parameters alg & hash at the top level of the CBOR Serialization ‘ Track Chunk m+4 ‘
Hash D1,0 with D1,1eriveq to yield D2, 0erive- manifest CBOR serialization are used for monolithic
@ p Dz_,Ddenved = D2,0as stored in the T‘S‘F’;, f\sﬁ\;;zar::rlfej;;il?esﬂ in the merkle row are ‘ Py —— ‘
manifest's merkle row hashes[] parameter,
and the corresponding initialization segment
was verified in step @, then chunk m+3 has .
been verified. :

Figure 6. Validating the chunkOs data

8.2.3. Asset Metadata Bindings

In those workflows which embed asset metadata into the asset, such asset metadata should not be excludédzby

26

hash assertions

This means that by default all asset metadata (including Exif metadata and IPTC metadata in either IPTC-1IM or XMP
format) will be included in thedata hash assertionsbut with no provenance information such as who made the
claims.

To explicitly assert the same claims in a C2PA assertion with verifiable provenance, the Exif or IPTC fields should be
copied to astds.exif or stds.iptc.photo-metadata assertion, as appropriate (se8ection 17.13, OExif
InformationOandSection 17.14, OIPTC Photo MetadiitaO

NOTE We recommend that existing Exif, IPTC-IIM and/or XMP asset metadata be left untouched in the
asset. This will allow for compatibility with tools which do not yet support C2PA metadata.

8.3. Soft Bindings

Soft bindings are described usingoft binding assertionssuch as via a perceptual hash computed from the digital
content or a watermark embedded within the digital content. These soft bindings enable digital content to be
matched even if the underlying bits differ, for example due to an asset rendition in a different resolution or encoding
format. Additionally, should a C2PA manifest be removed from an asset, but a copy of that manifest remains in a
provenance store elsewhere, the manifest and asset may be matched using available soft bindings.

Because they serve a different purpose, a soft binding shall not be used as a hard binding.

All soft bindings shall be generated using one of the algorithms listed as supported by this specification. This section
is intended to provide:

¥ A list of algorithms that are allowed for generating soft bindings of new content as well as required for validating
or locating existing content (the allowed list), and

¥ A list of algorithms that are required to be supported for validating or locating existing content but are not
allowed for generating soft bindings of new content (the deprecated list).

8.3.1. None Defined in 1.0

There are no soft binding algorithms defined in the approved list nor in the deprecated list in this version of the
specification.

The C2PA is currently evaluating various soft binding algorithms. One of the many possible options
NOTE includes thelSCC - International Standard Content Codkhe ISCC is an identifier and fingerprint for
digital assets that supports all major content types (e.g., text, image, audio, video). The ISCC uses is

similarity-preserving hashes generated both from metadata and content.

27

https://iscc.codes/

8.3.2. Future Requirements

This list of allowed algorithms will define the string algorithm identifier to be used as the algorithm identifier in the
corresponding field and the content types over which it is applicable. In cases where there are different versions of an
algorithm, each will be defined using different string algorithm identifiers. Any technical documentation sufficient for
the soft binding algorithm to be uniquely identified and utilized, should be referenced.

Each algorithm should be defined along with the names and values of all parameters affecting the operation of that
algorithm. When doing so, it shall describe the manner in which those parameters must be encoded withadghe
params field of thesoft binding assertion An algorithm that is instantiated over a different parameter set will be
considered a different algorithm.

Each algorithm may also define an encoding scheme for specifying the portion of digital content over which a soft
binding is computed (namely, thextent field of thescope object within thesoft binding assertion. An algorithm
that encodes theextent differently will be considered a different algorithm.

It is recommended that the string identifiers for soft binding algorithms conform to how they are referred to in
common practice.

28

Chapter 9. Claims

9.1. Overview

Aclaim gathers together all the assertions about an asset from an actor at a given time including the set of assertions
for binding to the content The claim is then cryptographically hashed and signed as describe8edntion 9.3.2.4,
OSigning a Claim@A claim has all the same properties as an assertion including being assigned the label
(c2pa.claim).

9.2. Syntax

TheCDDL Definitiorfor this type is:

; CDDL schema for a claim map in C2PA

claim-map = {

E "claim_generator": tstr, ; A User-Agent string formatted as per
http://tools.ietf.org/html/rfc7231#section-5.5.3, for including the name and version of the
claims generator that created the claim

E "signature": jumbf-uri-type, ; JUMBF URI reference to the signature of this claim

E "assertions": [1* $hashed-uri-map],

E "dc:format": tstr, ; media type of the asset

E "instancelD": tstr .size (1..max-tstr-length), ; uniquely identifies a specific version of
an asset

E ? "dc:title"™: tstr .size (1..max-tstr-length), ; name of the asset,

E ? "redacted_assertions": [1* jumbf-uri-type], ; List of hashed URI references to the
assertions of ingredient manifests being redacted

E 2 "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute all data hash assertions listed in this claim unless otherwise
overridden, taken from the C2PA data hash algorithm identifier registry. This provides the
value for the 'alg' field in data-hash and hashed-uri structures contained in this claim

E ? "alg_soft": tstr .size (1..max-tstr-length), ; A string identifying the algorithm used

to compute all soft binding assertions listed in this claim unless otherwise overridden,
taken from the C2PA soft binding algorithm identifier registry."

E ? "claim_generator_hints": generator-hints-map,

}

jumbf-uri-type = tstr .regexp "self#jumbf=[\Ww\d][\w\d\\./:-]+[\w\\d]"
generator-hints-map = {
E ? "Sec-CH-UA": [1* tstr], ; A human readable string naming the claim_generator

E * tstr => any

}

An example irCBOR-Diads shown below:

29

https://datatracker.ietf.org/doc/html/rfc8610
https://www.rfc-editor.org/rfc/rfc8949.html#name-diagnostic-notation

{

E "alg" : "sha256" ,

E "claim_generator" : "Joe's Photo Editor/2.0 (Windows 10)" ,

E "signature" : "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.signature” ,

E "dc:format” : “imageljpeg”

E "assertions" 0

E {

E "url" : "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.assertions/c2pa.hash.data"

E "hash" : b64'U 9Gyz05tmpftkoEYP 6XYNsMnUbnS/chtAg 2w 7n1n8='
E 1}

E

E "url" : "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.assertions/c2pa.thumbnail.claim.jpeg”

E "hash" : b64'G 5hflwYeWTIfixOhmfCO 9xDAK52aKQ+YbKNhRZe®2c-
E 1}

E

E

"url" : "self#jumbf=c2pa/urn:uuid:F9168C5E-CEB2-4faa-B6BF-
3298F39FA1E4/c2pa assertions/c2pa.claim.ingredient"

E "hash" : b64'Yzag 405jO 4xPyfANViw 7ETIbFSWZNfeM78qu| 8Abkk="
E }
El
E "redacted_assertions" o
E “selftjumbf=c2pa/urn:uuid: 5E7BOlFC 4932-4BAB-AB32-
D4F12A8AA322/c2pa.assertions/stds.exif"
El
}
The Media Typeof the ingredient shall be declared idc:format . If present, the value odic:title shall be a

human-readable name for the asset.

If the asset contains XMP, then the assed®sMM:InstancelD should be used as thimstancelD . When no XMP
is available, then some othernique identifier for the asset shall be used as the valueifstancelD

NOTE Some field names, such afc:format , have namespace prefixes as their names and definitions are
taken directly from the XMP standard. However, their usage in C2PA does not require the use of XMP.

The value of claim_generator is a human-readable string that will let a user know what
software/hardware/system produced this Claim. This field shall be present, and its value shall be a string that
conforms to the User-Agent string format specified in section 5.5.3F0FTP/1.1 Semantics and Conterinh addition,

the claim generator may also provide information about itself using tbi@im_generator_hints object which
allows using the specific fields from/3COs proposed User Agent Client Hints specification

30

https://www.iana.org/assignments/media-types/media-types.xhtml
http://tools.ietf.org/html/rfc7231#section-5.5.3
https://wicg.github.io/ua-client-hints/#http-ua-hints

Example using client hints

"claim_generator" : "Joe's Photo Editor/2.0 (Windows 10)" ,
"claim_generator_hints" Y
"Sec-CH-UA" : "Joe's Photo Editor" ,
"Sec-CH-UA-Full-Version" : "2.0"
"Sec-CH-UA-Platform" : "Windows"

S~ [Tp [Tp [Tp [T [TP [T

Thesignature field shall be present containing @RI referencdo aclaim signature

Theassertions field shall be present containing one or motéR| referenceto the assertionsbeing made by this
claim.

When present, theedacted_assertions field shall contain one or moré&RI referenceso redacted assertions

9.3. Creating a Claim

9.3.1. Creating Assertions

Before the claim can be finalized, alksertionsmust be created and stored in a newly create€@PA Assertion Storas
describedlater in this document

When creating a standard manifest, it may not be possible to know all of the required binding information at the time
of claim creation, in which case use thewultiple step processing methodto setup and then later fill-in the
information.

9.3.2. Preparing the Claim

9.3.2.1. Adding Assertions and Redactions

The claim shall contain thessertions field and its value is a list of all of the URI references for all assertions that
were added to the assertion store that are being "claimed" by this claim. At least one of the assertions shall be either a
data hash assertioror aBMFF-based hash assertion

If any assertions in ingredient claims are being redacted, their URI references shall be added to list which is the value
of theredacted_assertions field.

9.3.2.2. Adding Ingredients

In many authoring scenarios, an actor does not create an entirely new asset but instead brings in other existing assets
on which to create their work - either as a derived asset, a composed asset or an asset rendition. These existing assets
are called ingredients and their use is documented in the provenance data through the use obaadient assertion

When an ingredient contains one or more C2PA manifests, those manifests must be inserted into this assetOs manifest
store to ensure that the provenance data is kept intact. Such ingredient manifests are added to the JUMBF as

31

described inSection 10.1.1, OC2PA Box detailsO

9.3.2.3. Connecting the Signature

The signature cannot be part of the signed payload, but since its label is pre-defined, then the full URI reference is also
known. As such, we can include that in the claim by setting the value oftgeature field of the claim to that URI
reference.

NOTE This provides the explicit binding of the claim to its signature.

9.3.2.4. Signing a Claim

Producing the signature is specified ifiection 12.2, ODigital Signaturesthepayload field of Sig_structure
shall be the serialized CBOR of the claim document. The serial2@&E_Signl_Tagged structure resulting from
the digital signature procedure is written into the C2PA Claim Signature box.

9.3.2.5. Time-stamps

If possible, the signer should use a RFC3161-compliant Time Stamp Authority (R68)J161 section) 1o obtain a
trusted time-stamp proving that the signature itself actually existed at a certain date and time and incorporate that
into the COSE_Signl _Tagged structure as a countersignature. A manifest may contain multiple time-stamps.

Signers are encouraged to obtain and include time-stamps to ensure their manifests will remain
NOTE valid. As described iChapter 14 Validation, manifests without time-stamps cease to be valid when
the signing credential expires or becomes revoked.

All time-stamps shall be obtained as describedriC316with the following additional requirements:
¥TheMessagelmprint of theTimeStampReq structure RFC 3161 section 2.4.8hall be computed by creating
the ToBeSigned value inRFC 8152 section 4wiith the following values for elements &ig_structure
I Thecontext element shall beCounterSignature
I Thepayload element shall be as described fection 9.3.2.4, OSigning a ClaimO
! The remaining elements dbig_structure are as described ifection 12.2, ODigital SignaturesO

¥TheToBeSigned value is then hashed using a hash algorithm from the allowed lisBattion 12.1, OHashingO
that the TSA supports, and that hash algorithm and value are placed inNtessagelmprint . If the TSA does
not support any hash algorithms from the allowed list, it cannot be used for time-stamping.

I Where possible, the hash algorithm should use the same hash algorithm used in the digital signature of the
claim.

¥ThecertReq boolean of theTimeStampReq structure shall be asserted in the request to the TSA, to ensure its
certificate chain is provided in the response.

Time-stamps shall be stored in a COSE unprotected header whose label is the stgiigt . If no time-stamps are

32

https://datatracker.ietf.org/doc/html/rfc3161
https://tools.ietf.org/html/rfc3161
https://datatracker.ietf.org/doc/html/rfc3161#section-2.4.1
https://datatracker.ietf.org/doc/html/rfc8152#section-4.4

included, the header shall be absent. When present, the value of this header shalltb€antainer defined by
the following CDDL:

; CBOR version of tstContainer and related structures based on JSON schema at
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/19182-jsonSchema.json
tstContainer = {

E "tstTokens": [1* tstToken]

}

tstToken ={
E "val": bstr

}

The content of theTimeStampResp structure received in reply from the TSA shall be stored as the value ofdhe
property of an element ofstTokens

The above definition is a CBOR adaptation of a subset of the schema Jrailix S section 5.3.d@ndits
NOTE JSON schemaexcept with the modification that the content ofal is a byte string containing the
content of theTimeStampResp , and not a Base64-encoded version of the same.

9.3.2.6. Credential Revocation Information

If the signerOs credential type supports querying its online credential status, and the credential contains a pointer to a
service to provide time-stamped credential status information, the signer should query the service, capture the
response, and store it in the manner described for the signerOs credential type iffrthet Model If credential
revocation information is attached in this manner, a trusted time-stamp must also be obtained after signing, as
described inSection 9.3.2.5, OTime-stampsO

9.3.3. Examples of Claims

9.3.3.1. Single Claim

Here is a visual representation of an image containing a single claim with multiple assertions that have been
embedded inside it.

33

https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010101p.pdf
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/19182-jsonSchema.json
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/19182-jsonSchema.json

