(®

Coalition for
Content Provenance
and Authenticity

PUBLIC DRAFT, 2021-08-31: Draft Specification (0.7)

Table of Contents

1. Introduction
1.1. Overview
1.2. Scope
1.3. Technical Overview
1.4. Establishing Trust
1.5. Example
1.6. Design Goals
2. Glossary
2.1. Introductory terms
2.2. Assets and Content
2.3. Core Aspects of C2PA
2.4. Additional Terms
2.5. Overview
3. Normative References
3.1. Core Formats
3.2. Schemas
3.3. Digital & Electronic Signatures
3.4. Other
4. Standard Terms
5. Assertions
5.1. General
5.2. Labels
5.3. Versioning
5.4. Multiple Instances
5.5. Assertion Store
5.6. Embedded vs Externally-Stored Data
5.7. Redaction of Assertions
6. Unique Identifiers
6.1. Using XMP
6.2. Other Identifiers
6.3. URI References
7. W3C Verifiable Credentials
7.1. General
7.2. VCStore

o o & U1 1 LT D M W W RN NN

N R R R R R R R R RERERRRRRRRRBR R
O © © O oo oo oo vt N~ b DD DD OLOWC”CLW OO DN PP O O o o

7.3. Using Credentials
7.4. Credential Security Considerations
8. Binding to Content
8.1. Overview
8.2. Hard Bindings
8.3. Soft Bindings
9. Claims
9.1. Overview
9.2. Syntax
9.3. Creating a Claim
9.4. Multiple Step Processing
10. Manifests
10.1. Use of JUMBF
10.2. Embedding manifests into assets
11. Entity Diagram
12. Cryptography
12.1. Hashing
12.2. Digital Signatures
13. Trust Model
13.1. Overview
13.2. Identity of Signers
13.3. Signer Credential Trust
13.4. Identity In Assertions
13.5. Statements
14. Validation
14.1. Validate the Claim
14.2. Validate the Signature
14.3. Validate the Time Stamp (if present)
14.4. Validate the Credential Revocation Information (if present)
14.5. Validate the Assertions in the AssetOs Claim
14.6. Recursively Verifying Integrity of Ingredients
14.7. Inability to access external URIs
14.8. Visual look of Validation
14.9. Validate the AssetOs Content
15. User Experience
15.1. Approach
15.2. Principles

21
21
22
22
22
24
26
26
26
28
31
34
34
37
44
45
45
46
A8
48
A8
52
53
53
54
54
55
55
55
56
57
59
59
60
62
62
62

15.3. Disclosure Levels
15.4. Public Review, Feedback and Evolution
16. Information security
16.1. Threats and Security Considerations
16.2. Harms, Misuse, and Abuse
17. C2PA Standard Assertions
17.1. Introduction
17.2. Use of CBOR
17.3. Metadata About Assertions
17.4. Standard C2PA Assertion Summary
17.5. Data Hash
17.6. BMFF-Based Hash
17.7. Soft Binding
17.8. Cloud Data
17.9. Thumbnail
17.10. Actions
17.11. Ingredient
17.12. Depthmap
17.13. Exif Information
17.14. IPTC Photo Metadata
17.15. Use of Schema.org
18. Open Topics
18.1.Assertions
18.2.Binding to Content
18.3.Trust Model
18.4.Validation

18.5.User Experience

62
63
64
64
66
3
73
73
74
81
82
84
89
91
92
93
96
99
101
102
104
111
111
111
111
111
111

Ot

This work is licensed under @reative Commons Attribution 4.0 International License

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Chapter 1. Introduction

1.1. Overview

With the digital transformation of information sharing, establishing the provenance of media has become critical. To
address this issue at scale for publishers, creators and consumers, the Coalition for Content Provenance and
Authenticity (C2PA) has developed this technical specification for providing content provenance and authenticity.
This specification has been, and continues to be, informed by scenarios, workflows and requirements gathered from
industry experts and partner organizations, including th€roject Origin Allianceand the Content Authenticity
Initiative (CAl)

This specification is designed to enable global, opt-in, adoption of digital provenance techniques through the creation
of a rich ecosystem of digital provenance enabled applications for a wide range of individuals and organizations while
meeting appropriate security requirements. It is also possible that regulatory bodies and governmental agencies
could utilize this specification to establish standards for digital provenance.

Prior to developing this specification, the C2PA created @uriding Principlesthat enabled us to remain focused on
ensuring that the specification can be used in ways that respect privacy and personal control of data with a critical
eye toward potential abuse and misuse. For example, the creators and publishers of the media assets always have
control over whether provenance data is included as well as what specific pieces of data are included.

From the overarching goals section of the guiding principles:

IMPORTANT C2PA specifications SHOULD NOT provide value judgments about whether a
given set of provenance data is 'good' or 'bad," merely whether the
assertions included within can be verified as associated with the
underlying asset, correctly formed, and free from tampering.

It is important that the specification does not negatively impact content accessibility for consumers.

1.2. Scope

This specification describes the technical aspects of the C2PA architecture; a model for storing and accessing
cryptographically verifiable information whose trustworthiness can be assessed based on a defined model.
Included in this document is information about how to create and process a C2PA manifest and its components,
including the use of digital signature technology for enabling tamper-evidence as well as establishing trust.

Other documents from the C2PA will address specific implementation considerations such as expected user
experiences and details of our threat and harms modelling.

https://www.originproject.info/
https://contentauthenticity.org/
https://contentauthenticity.org/
https://c2pa.org/principles/

1.3. Technical Overview

The C2PA information comprises a series of statements that cover areas such as asset creation, authorship, edit
actions, capture device details, bindings to content and many other subjects. These statements, calledrtions

make up the provenance of a given asset and represent a series of trust signals that can be used by a human to
improve their view of trustworthiness concerning the asset. Assertions are wrapped up with additional information
into adigitally signedentity called aClaim

TheW3C Verifiable Credentiatf individual actors that are involved in the creation of the assertions can be added to
the C2PA information to provide additional trust signals to the process of assessing trustworthiness of the asset.

These assertions, claims, credentials and signatures are all bound together into a verifiable unit callethéestby a
hardware or software component called a Claim Generator. The set of manifests, as stored in the assetOs Manifest
Store, represent its provenance data.

C2PA Manifest

Assertions

Caim

@ Claim Signature

Figure 1. A C2PA Manifest and its constituent parts

1.4. Establishing Trust

The basis of making trust decisions in C2PA, dunst Mode] is the identity of the actor associated with the
cryptographic signing key used to sign the claim in the active manifest. The identity of a signatory is not necessarily a
human actor, and the identity presented may be a pseudonym, completely anonymous, or pertain to a service or
trusted hardware device with its own identity, including an application running inside such a service or trusted
hardware.

https://www.w3.org/TR/vc-data-model

1.5. Example

A very common scenario will be a user (called an actor in the C2PA ecosystem) taking a photograph with their C2PA-
enabled camera (or phone). In that instance, the camera would create a C2PA manifest containing some such
assertions including information about the camera itself, a thumbnail of the image and some cryptographic hashes
that bind the photograph to the manifest. These assertions would then be listed in the Claim, which would be digitally
signed and then the entire manifest would be embedded into the output JPEG.

Manifest Store/
Manifest)
[Assertion Store,
Stds oxi C2pahash.data)
” CZpa.thumbnail .claim_0.png
»
B crEDT CBOR structure containing
details such as the camera jnigimationjabortithe & Binary Image Data
R AT e cryptographic hashes binding
P! to the content.
Claim,
Claim Signature/
"
CBOR structure with
references to the Assertions # COSE Digital Signature
and the Claim Signature

Figure 2. Photo manifest

A manifest consumer, such as a C2PA validator, could help users to establish the trustworthiness of the asset by first
validating the digital signature and its associated credential. It can also check each of the assertions for validity and
present the information contained in them, and the signature, to the user in a way that they can then make an
informed decision about the trustworthiness of the digital content.

1.6. Design Goals

In the creation of the C2PA architecture, it was important to establish some clear goals for the work to ensure that the
technology was usable across a wide spectrum of hardware and software implementations worldwide and accessible
to all.

Some of those goals were:
¥ Maintain the provenance of the asset across multiple tools, from creation through all subsequent modification

and publication/distribution.

¥ Support all standard asset formats supported by common authoring tools, across media types such as images,
videos, audio, and documents.

¥ Create only the minimum required novel technology by relying on well-established techniques.
¥ Do not require cloud storage but allow for it.
¥ Allow flexibility in the nature of information stored.

¥ Allow for information to be subsequently redacted, provided that the author permits it.

Chapter 2. Glossary

2.1. Introductory terms

2.1.1. Actor

A human or non-human (hardware or software) that is participating in the C2PA ecosystem. For example: a camera
(capture device), image editing software, cloud service or the person using such tools.

NOTE An organization or group cdictors may also be considered aactor in the C2PA ecosystem.

2.1.2. Signer

An actor (human or non-human) whose credentialOs private key is used to sign the claim. The signer is identified by
the subject of the credential.

2.1.3. Claim generator

The non-human (hardware or softwarg)ctor that generates theclaim about anassetas well as thelaim signature
thus leading to theassets associatednanifest

2.1.4. Manifest consumer

Anactor who consumes amssetwith an associatednanifestfor the purpose of obtaining th@rovenance datafrom
the manifest

2.1.5. Action

An operation performed by aactor on anasset.For example, "create", "embed", or "apply filter".

2.2. Assets and Content

2.2.1. Digital content

The portion of anassetthat represents the actual content, such as the pixels of an image, along with any additional
technical metadata required to understand the content (e.g., a colour profile or encoding parameters).

2.2.2. Asset metadata

The portion of anassetthat represents non-technical information about thassetand itsdigital content as may be
stored via standards such as EXIF or XMP.

2.2.3. Asset

A file or stream of data containindigital content asset metadataand optionally, a C2P/anifest

NOTE For the purposes of this definition, we will extend the typical definition of "file" to include cloud-
native and dynamically generated data.

2.2.4. Derived asset

A derived asset is aassetthat is created by starting from an existiragsetand performingactionsto it that modify its
digital contentandasset metadata

EXAMPLEAnN audio stream that has been shortened or a document where pages have been added.

2.2.5. Asset rendition

A representation of amsset(either as a part of aassetor a completely nevasse) where thedigital contenthas had a
‘'non-editorial transformation’ action (e.g., re-encoding or scaling) applied but where thgset metadatahas not been
modified.

NOTE This is also referred to askacsimile Asset

EXAMPLEA video file that is re-encoded for reduced screen resolution or network bandwidth.

2.2.6. Composed asset

A composed asset is aassetthat is created by building up a collection of multiple parts or fragments difital
content (referred to as ingredients) from one or more otha&ssets When starting from an existingsset it is a special
case of aerived asset however &omposed assetan also be one that starts from a "blank slate".

EXAMPLEA video created by importing existing video clips and audio segments into a "blank slate". An image where
another image is imported and super-imposed on top of the starting image.

2.3. Core Aspects of C2PA

2.3.1. Assertion

A data structure which represents a statement asserted byaator concerning theasset This data is a part of the
manifest

2.3.2. Claim

A digitally signed and tamper-evident data structure that references a setas$ertionsby one or moreactors
concerning anasset and the information necessary to represent tloentent binding If anyassertionswere redacted,

then a declaration to that effect is included. This data is a part of thenifest

2.3.3. Claim signature

The digital signature on thelaim using the private key of aactor. The claim signature is a part of tmeanifest

2.3.4. Manifest

The set of information about theprovenanceof an asset based on the combination of one or morassertions
(including content binding$, a singleclaim, and aclaim signature A manifest can either be embedded into assetor
be external to itsasset

NOTE A manifest can reference other manifests.

2.3.5. Origin

Themanifestin theprovenance datavhich represents the method or device that initially created theset

NOTE Details on how one determines whiamanifestis theorigin are left for specification.

2.3.6. Active Manifest

The last manifest in the list of manifests which is the one with the setarftent bindingsthat are able to be validated.

2.3.7. Provenance

The logical concept of understanding the history of assetand its interaction withactors and otherassets as
represented by theprovenance data

2.3.8. Provenance data

The set oimanifestsfor anassetand, in the case of @@mposed asseits ingredients.

2.3.9. Content binding

Information that associatesdigital contentto a specificmanifest associated with a specifiasset either as ahard
binding or asoft binding

2.3.10. Hard binding

One or more cryptographic hashes that uniquely identifies either the entissetor a portion thereof.

2.3.11. Soft binding

A content identifier that is either (a) not statistically unique, such aBregerprint, or (b) embedded as watermark in
the identified content.

2.3.12. Trust signals

The collection of information that can inform aactorOgudgment of the trustworthiness of amsset These are in
addition to thesignerof aclaim, upon which the fundamental trust model relies.

2.4. Additional Terms

2.4.1. Fingerprint
A set of inherent properties computable frowfigital contentthat identifies the content or near duplicates of it.

EXAMPLE:ANn asset can become separated from itmanifest due to removal or corruption ofasset metadata. A
fingerprint of thedigital content of theassetcould be used to search a database to recover #ssetwith an intact
manifest

2.4.2. Watermark

Information incorporated into thedigital content (perceptibly or imperceptibly) of arassetwhich can be used, for
example, to uniquely identify theassetor to store a reference to manifest

2.4.3. Provenance datastore

A repository into which C2Péanifestscan be placed, and which can be searched usingpatent binding

2.5. Overview

This image shows how all these various elements come together to represent the C2PA architecture.

Provenance data @

Manifest

Active manifest

m‘}'ada\a @ Claim signature
Aucer

odug

Content binding

@ Provenance

Hard binding

Soft binding
(optional)

= — @ Asset metadata

\/Z @ Digital content

Figure 3. Elements of C2PA

Chapter 3. Normative References

3.1. Core Formats

¥CBOR

¥JSON

¥JSON-LD

¥ JPEG universal metadata box form@UMBF)

¥1S0O Base Media File Form@MFF)

3.2. Schemas

¥ CDDL
¥ JSON Schema

¥ Dublin Core Metadata Initiative

3.3. Digital & Electronic Signatures

¥ X.509 Certificates

¥ JSON Web Algorithm@WA)

¥ CBOR Object Signing and Encrypti(@OSE)

¥Using RSA Algorithms with COSE Messages

¥ Online Certificate Status ProtocqlOCSP)

¥Internet X.509 PKI Time-Stamp Protocol

¥ CBOR Object Signing and Encryption (COSE): Header parameters for carrying and referencing X.509 certificates

¥ Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile

¥Internet X.509 Public Key Infrastructure: Additional Algorithms and Identifiers for DSA and ECDSA
¥ PKCS #1: RSA Cryptography Specifications Version 2.2
¥ JSON Advanced Electronic Signatur€RAdES)

¥US Secure Hash Algorithms

10

https://tools.ietf.org/html/rfc8949
https://tools.ietf.org/html/rfc8259
https://www.w3.org/TR/json-ld11/
https://www.iso.org/standard/73604.html
https://www.iso.org/standard/74428.html
https://datatracker.ietf.org/doc/html/rfc8610
https://json-schema.org/specification-links.html#2020-12
https://www.dublincore.org/specifications/dublin-core/dces/
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc7518
https://tools.ietf.org/html/rfc8152
https://tools.ietf.org/html/rfc8230
https://tools.ietf.org/html/rfc6960
https://tools.ietf.org/html/rfc3161
https://datatracker.ietf.org/doc/draft-ietf-cose-x509/
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc3279
https://tools.ietf.org/html/rfc5758
https://tools.ietf.org/html/rfc8017
https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010101p.pdf
https://datatracker.ietf.org/doc/html/rfc6234

3.4. Other

¥ eXtensible Metadata PlatforniXMP)
¥ JSON-LD serialization of XMP
¥|PTC Photo Metadata Standard
¥EXIF

¥UUID

11

https://www.iso.org/standard/75163.html
https://www.iso.org/standard/79384.html
http://www.iptc.org/std/photometadata/specification/IPTC-PhotoMetadata
https://www.cipa.jp/std/documents/download_e.html?DC-008-Translation-2019-E
https://tools.ietf.org/html/rfc4122

Chapter 4. Standard Terms

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT'
"RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted a
described inBCP 14RFC 211%ndRFC 8174vhen they appear in any casing (upper, lower or mixed).

12

https://tools.ietf.org/html/bcp14
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc8174

Chapter 5. Assertions

5.1. General

It is expected that each of the actors in the system that creates or processes an asset will produce one or more
assertions about when, where, and how the asset was originated or transformed. An assertion is labelled data,

typically (though not required to be) in a CBOR-based structure which represents a declaration made by an actor
about an asset. Some of these actors will be human and add human-generated information (e.g., copyright) while

other actors are machines (software/hardware) providing the information they generated (e.g., camera type).

Some examples of assertions are:

¥ Exif information (e.g. camera information such as maker, lens)
¥ Actions performed on the asset (e.qg., clipping, color correction)
¥ Thumbnail of the asset or its ingredients

¥ Content bindings (e.g., cryptographic hashes)

Certain assertions may be redacted by subsequent claims (Seetion 5.7, ORedaction of Assertioyskut they
cannot be modified once made as part of a claim.

5.2. Labels

Each assertion has label defined either by the C2PA specifications or an external entity.

Labels are string values organized into namespaces using a perigci$ a separator. The namespace component of

the label can be an entity, or a reference to a well-established standard (see ABNF below). The most common labels
will be defined by the C2PA and will begin wit2pa. . Entity-specific labels shall begin with the Internet domain
name (without the top level domain (TLD), if that TLD.égem) for the entity (e.g.d@obe. , bbc.), similar to how

Java packages are defined. Well-established standards can use the "stds." prefix when describing their namespace.
They are also versioned with a simple incrementing integer scheme (e2pa.claim.date.v2). If no version is
provided, it is considered aw1l. The list of publicly known labels can be found hapter 17,C2PA Standard
Assertions

namespaced-label = qualified-namespace label
qualified-namespace = entity / ("stds.” std-name)
entity = 1*(DIGIT / ALPHA / "-")

std-name = 1*(DIGIT / ALPHA / "-")

label = 1*("." L(ALPHA /"_") *(DIGIT / ALPHA /" "))

The period-separated components of a label follow the variable naming conventijerzA-Z_J[a-zA-Z0-9_]*)
specified in the POSIX or C locale, with the restriction that the use of a repeated underscore charactes (eserved
for labeling multiple assertions of the same type.

13

5.3. Versioning

When an assertionOs schema is changed, it should be done in a backwards-compatible manner. This means that new
fields may be added and existing ones may be marked as deprecated (i.e., can be read, but never written). Existing
fields shall not be removed. The label would then consist of an incremented version number, for example moving
from c2pa.ingredient to c2pa.ingredient.v2

Deprecated fields for C2PA standard assertions shall be indicate®limpter 17,C2PA Standard AssertioriBools
which enable actors to create assertions shall prevent the actor from inserting data into deprecated assertion fields.

In addition, there are situations where a non-backwards compatible change is required. In that case, instead of
increasing the labelOs version number, the assertion shall be given a new label. For exafpaléngredient
could be changed to the fictionat2pa.component

5.4. Multiple Instances

Multiple assertions of the same type can occur in the same manifest, but since assertions are referenced by claims via
their label, the assertion labels must be unique. This is accomplished by adding a double-underscore and and a
monotonically increasing index to the label. For example, if a manifest contains a single assertion of type
stds.schema-org.CreativeWork , then the assertion label will betds.schema-org.CreativeWork .Ifa
manifest contains three assertions of this type, the labels will kds.schema-org.CreativeWork ,
stds.schema-org.CreativeWork__ 1 andstds.schema-org.CreativeWork__ 2

When a label includes a version number, that version number is part of the label itself. As such, when there are
multiple instances, the instance number continues to follow the label - ea@pa.ingredient.v2__ 2

5.5. Assertion Store

The set of assertions referenced byckim in a manifest are collected together into a logical construct that is referred
to as theassertion store. When embedded in an asset, the assertions shall be stored as describ&édiion 10.1,
OUse of JUMBHSut when stored externally (e.g., in the cloud) they may be stored in any fashion.

For each manifest, there is a single assertion store associated with it. However, as an asset may have multiple
manifests associated with it, each one representing a specific series of assertions, there may be multiple assertion
stores associated with an asset.

5.6. Embedded vs Externally-Stored Data

As mentioned above, the entire assertion store (and all of the assertions that it contains) may be located externally
from the asset (e.g., in the cloud). When the assertion store is embedded in an asset, it is still possible for an individual
assertion to be located internally or externally. Additionally, just the data for a given assertion may also be located
externally via a cloud data assertion (s&ction 17.8, OCloud DajaO

14

5.7. Redaction of Assertions

Assertions that are present in an asset-embedded manifest may be removed from that assetOs manifest when the
asset isused as an ingredientThis process is called redaction.

Redaction involves removing either the entire assertion from the manifestOs assertion store or retaining the labeled
assertion container but replacing its data with zeros (bina¥y values). In addition, a record that something was
removed must be added to theclaim in the form of aURI referenceto the redaction assertion in the
redacted_assertions field of the claim.

Because each assertionO®&| referencencludes the assertion label, it is also known what type of
NOTE information (e.g., thumbnail, IPTC metadata, etc.) was removed. This enables both humans and

machines to apply rules to determine if the removal was acceptable.

Claims generators shall not redact assertions with a label a2pa.action as this assertion type represents
essential information in understanding the history of an asset.

15

Chapter 6. Unique Identifiers

Every asset that is referenced from an assertion or claim shall be referenced via one or more unique identifiers. These
identifiers are used in various parts of a C2PA-enabled workflow, such as when identifying it asyaiient in a
derived or composed asset.

6.1. Using XMP

When an asset contains embedded XMP, that XMP shall include (at least) valugspdiM:DocumentlD and
xmpMM:InstancelD as defined inKMP Specification Part 2, 2. an asset does not contain XMP at the time a claim

is made, and the type of the asset supports it, an embedded XMP packet may be created as part of the process, and
the identifiers shall be added to it.

NOTE 1

NOTE Some asset types are not suited for embedded XMP (e.g., text). It is possible to create XMP as a
sidecar.

NOTE 2

The Adobe XMP Toolkit SDiéan be used to create and modify XMP \iarious asset types
Alternatively, since XMP is serialized as XML+RDF, any standard XML library can be used for the
purpose of working with XMP (though asset specific processing would be left up to the processor).

NOTE

6.2. Other Identifiers

Instead of using XMP, a unique identifier for an asset could be a URI defined by standards sti¢iRasd DOl

Another standard unique identifier for an asset could be the cryptographic hash of the asset. When this method is
used, the hash shall be represented using a standard-C 4122 UUIDollowing the recommendations at
https://datatracker.ietf.org/doc/html/draft-thiemann-hash-urn-01.

EDITORS NOTE

NOTE
Other methods may be defined here as they are developed.

6.3. URI References

Assertions and claims, whether they are stored internally to the asset (ie. embedded) or stored externally to the asset
(e.g., in the cloud), shall be referenced via JUMBF URI references as defitie@ i9566-5, C.This URI shall be used
as part of ehashed_uri data structure:

16

https://wwwimages2.adobe.com/content/dam/acom/en/devnet/xmp/pdfs/XMP%20SDK%20Release%20cc-2014-12/XMPSpecificationPart2.pdf
https://github.com/adobe/XMP-Toolkit-SDK/
https://github.com/adobe/XMP-Toolkit-SDK/tree/master/XMPFiles/source/FileHandlers
https://www.eidr.org/
https://www.doi.org/
https://tools.ietf.org/html/rfc4122
https://datatracker.ietf.org/doc/html/draft-thiemann-hash-urn-01
https://www.iso.org/standard/73604.html

{

E "$schema" : "http://json-schema.org/draft-07/schema" ,

E "$id" : "http://ns.c2pa.org/hashed-uri/v1" ,

E "type" : "object"

E "description” : "The data structure used to store a reference to a URL and its hash" ,
E "definitions" c

E "JUMBF_URI": {

E "$id" : "#IJUMBF_URI",

E "description” : "JUMBF URI reference" ,

E “type" : "string"

E "anyOf" : |

E {

E "pattern” @ “https: W [-a-zA-Z0-9@:%._ \\ +~#=}{2,256} \\ .[a-z]{2,6} \\ b[-a-zA-Z0-
9@:% \ +.~#?&/I=]*"

E 3

E {

E "pattern” : "Aself#jumbf=[oW dll W WA dWN L N WAL d$
E }

E]

E)

E}

E "examples" : [

E {

E "url" : "self#jumbf=c2pa/acme:urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.assertions/c2pa.claim.date" ,

E "alg" : "sha256" |,

E "hash" : "hoOspQQ1LIFTy/4Tp8Epx670E5QW5NWKNR+2b30KFXug="

E)

El

E "required” : ["url® , "hash"],

E "properties" c

E url' |

E "$ref" : "#/definitions/JUMBF_URI" ,

E "description” : "JUMBF URI reference"

E)

E ralg" : {

E "type" "string”

E "minLength" : 1,

E "description” : "A string identifying the cryptographic hash algorithm used to compute

all hashes in this claim, taken from the C2PA hash algorithm identifier list. If this field
is absent, the hash algorithm is taken from an enclosing structure as defined by that
structure. If both are present, the field in this structure is used. If no value is present
in any of these places, this structure is invalid; there is no default."
}
"hash" : {

"type" : 'string"

"minLength" : 1,

"description” : "CBOR byte string containing the hash value"

}
Ji

"additionalProperties” . false

=7 [T [T [T [Th [Th [Th [T M

NOTE This syntax enables these various objects to live either embedded or stored in the cloud while also
providing the important hash value for validation purposes.

The hash is performed over the canonical serialization of the assertion data, omitting the surrounding container. For
example, if the assertion type is2pa.actions , then the hash is calculated over the canonical serialization

17

serialization ofactions-map

If a URI reference is an external URL (as definedin 19566-5, O,2then the domain of that URL shall be the same
domain/organization associated with the signing certificate used on thieim signature Also, for URI references to
assertions stored externally to the asset, the label of the assertion shall be included in the query parameter of the
URL, such abkttp://c2pa.adobe.com/assertions/123456?cai=stds.exif

18

https://www.iso.org/standard/73604.html
http://c2pa.adobe.com/assertions/123456?cai=stds.exif

Chapter 7. W3C Verifiable Credentials

7.1. General

In some use cases, the actors in the system may wish to provide their\6i8@ Verifiable Credentiaas they exist at
that moment in time, to the claim generator to have them associated with one or more assertions. These actors may
be individuals, groups or organizations.

W3C Verifiable Credentials are used in this specificatiordézorate the actors identified in assertions with more
information, potentially providing additional trust signals. Although these W3C Verifiable Credentials can include
proofs of their own authenticity, they ar@mot a mechanism for verifying that a particular actor authorised a claim,
assertion or piece of metadata. Any validation or usage of the W3C Verifiable Credential is out of scope of this
specification and has no bearing on the2PA Trust Model

For example, conveying a W3C Verifiable Credential for the actor identified aautier in an assertion might link
that authorOs ID with an email address, social media ID, or real name, or it might identify that actor as a member of a
particular professional body, or provide other qualifications relevant to the actorOs involvement in the asset.

Such credentials shall be compliant with thé/3C Verifiable Credentials Data Modksing theJSON-LD serialisation
described there.

JSON-LD serialization is mandated as it is the most commonly used of the three syntaxes presented
NOTE in section 6 of the W3C Verifiable Credentials specification. It is also the one that aligns best with its
extensibility model, which could be useful to some implementors.

An example of a compliant credential for an individual might be one issued by the National Press Photographers

Association (NPPA), which links an identifier for a person to their name ("Bob Ross") and a statement about their
membership of the NPPA. It might look like:

19

https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/#json-ld

~

E "@context" : [

E "https://www.w3.0rg/2018/credentials/v1" ,
E "http://schema.org"

E1l

E "type" : [

E "VerifiableCredential ,

E "NPPACredential"

E1l

E "issuer" : "https://nppa.org/" ,

E "credentialSubject" c

E "id" : "did:nppa:eb1bb9934d9896a374c384521410c7f14" ,
E "name": "Bob Ross" |,

E "memberOf' : "https://nppa.org/"

E},

E "proof* : {

E “"type" : "RsaSignature2018"

E "created" : "2021-06-18T21:19:10Z" ,

E "proofPurpose" : "assertionMethod" ,

E “verificationMethod"

d

id:nppa:eb1bb9934d9896a374c384521410c7f14#_QQOUL2Fq651Q0Fjd6TvnYE-faHIOpRIPVQCY_-tA4A"
"jws" : "eyJhbGciOiJQUzI1NilsImI2NCI6ZmFsc2UsImNyaXQiOlsiYjYO0ll19
DJBMvVFAICO0NSGB6TNOXKbbFIXrsaJZREWVR2aONY TQQxnyXirtXnlewJMB
Bn2h9hfcGZrvnC1b6PgWmukzFJ1liIH1dWgnDIS81BH-IxXnPkbuYDeySorc4
QUIMIXdVKY5ELAHYbclfwKj6X4LBQ2_ZHZluljdgqLcRZgHcsDF5KKyIKc1TH
n5VRWyY5WhYg_gBnyWny8E6Qkrze53MR7OuAMmMNJI1m1nN8SxDrG6a08L78J0-
Fbas50jAQz3c17GY8mVuDPOBIOV|MEghBIgI3nOilysxbRGhHLEK4sO0KKbeR
00Zdgt1DkQxDFxxn41QWDw_mmMCjs9qgxg0zcZzqEJIw"

S~ [Tp [T [T [T [T [T [T [Th

A W3C Verifiable Credential used with C2PA shall contain only a siogléentialSubject and that
credentialSubject shall have and value.

Although the example above and many examples in the W3C Verifiable Credentials data model
specification use Decentralized Identifiers (DIDs) as the value ofidhdield, DIDs are not necessary

for W3C Verifiable Credentials to be useful. Specifically, W3C Verifiable Credentials do not depend on
DIDs and DIDs do not depend on W3C Verifiable Credentials. DID-based URLs are just one way to
express identifiers associated with subjects, issuers, holders, credential status lists, cryptographic
keys, and other machine-readable information associated with a W3C Verifiable Credential.

NOTE

7.2. VVCStore

The set of credentials in a manifest are collected together into a logical construct that is referred to agedential
store or VCStore (for short) and it shall be stored as describedSection 10.1, OUse of JUMBB@like the assertion
store, the VCStore shall always be included in the JUMBF - it shall not be stored separately.

For each manifest, there is a VCStore associated with it. However, as an asset may have multiple manifests associated
with it, there may be multiple VCStores associated with an asset.

20

7.3. Using Credentials

The Creative Workassertion may contain references to Persons or Organisations which are responsible for various
roles and responsibilities to the Work. These references may contain W3C Verifiable Credentials eiadastial

field whose value is thénashed JUMBF URo the specific credential in the VCStore. When present in the Person or
Organization object, itsd field shall match thed field present in the credentialSubject field of the VCs.

"@context" : "http://schema.org/" ,
"@type" : "CreativeWork" ,
"copyrightHolder" A
"name" . "BBC",
"legalName" : "British Broadcasting Corporation” ,
"id" : "https://www.bbc.co.uk/" ,
"credential" |
{
"url" : "self#jumbf=c2pa/acme:urn:uuid:F9168C5E-CEB2-4faa-B6BF-
29BF39FA1E4/c2pa.credentials/https://www.bbc.co.uk/" ,
"alg" : "sha256" ,
"hash" : "Auxjtmax46cC2N3Y9aFmBO9Jfay8LEwWJWzBUtZ0sUM8gA"
}
]
h
"copyrightYear" : 2021,
"copyrightNotice" : "Copyright © 2021 BBC."

S [Th [Tp [T [T [T [TH [T W [Th [Th [T [T [T [T [Th [T M~

7.4. Credential Security Considerations

In most W3C Verifiable Credential workflows, the information about the subject (e.g., the cryptographic keys) is
fetched on demand at the time of validation. While that is an acceptable model, it does open up a possible attack
vector by providing an attacker with an externally-visible signal about what the validator is validating. Therefore,
C2PA also supports having the information captured and embedded at the time of signature. This not only prevents
leakage, but also makes it very clear what data the signer is asserting about the credentialOs subject.

21

Chapter 8. Binding to Content

8.1. Overview

A key aspect to the C2PA manifest is the presence of one or more data structures that can uniquely identify portions of
the asset. There are two types of bindings that are supported by C2PA - hard bindings and soft bindings. A hard
binding (also known as a cryptographic binding) enables the verifier to ensure that (a) this manifest belong with this
asset and (b) that the asset has not been modified, by determining values that can match only this asset and no other,
not even other assets derived from it or renditions produced from it. A soft binding is computed from the digital
content of an asset, rather than its raw bits. A soft binding is useful for identifying derived assets and asset renditions.

8.2. Hard Bindings

8.2.1. Hashing using byte ranges

The simplest type of hard binding that can be used to detect tampering is a cryptographic hashing algorithm, as
described inSection 12.1, OHashingdver some or all of the bytes of an asset. This approach can be used on any type
of asset.

When using this form of hard binding, one or mateta hash assertionss used to define the range of bytes that are
hashed (and those that are not). Because each data hash assertion defines a byte range and optional URL, it is flexible
enough to be usable whether the asset is a single binary or represented in multiple chunks or portions, local or
remote.

8.2.2. Hashing a BMFF-formatted asset

If the asset is based of5O BMFRhen a hard binding optimized for the box-based format (call&d/FF-based hash
assertion9 may be used instead.

For a monolithic mp4 file asset where thedat box is verified as a unit, the assertion is verified nearly identically to a
data hash assertion. It simply uses a box exclusion list instead of byte ranges to define the range of bytes that are
hashed (and those that are not).

For a monolithic mp4 file asset where thedat box is verified piecemeal or an asset composed of fragmented mp4
files, the assertion itself must be combined with chunk-specific hashing information which is located as specified in
Section 10.2.2, OEmbedding manifests into BMFF-based asséesilying a given chunk requires first verifying the
merkle fieldO#itHash over the corresponding initialization segment and then locating the correct entry in the
merkle fieldOsashes array and verifying it against the hash of the chunkOs data plus (if needed) deriving the hash
using the otherhashes specified in the chunk@8&pa box.

22

https://www.iso.org/standard/74428.html

Track #n Initialization Segment Track #n Trackn+l Trackn+2
L] . .
c2pa box . o o
o . .

string box_purpose = manifest |

bit (8) data = Track Chunk m+1 |

Track Chunk| Track Chunk|

Track Chunk|

To verify track chunk m+3 you must first compare/verify the
corresponding initialization segment.

Track Chunk Track Chunk

Track Chunk m+3
The c2pa box in each Track’s initialization segment

will contain the Manifest (which must be identical

across tracks). The Manifest's c2pa.bmff.hash H

assertion will contain CBOR with an array of merkle c

rows, one per track.

L+ Array of Merkle rows
« Exclusions[]

.+ alg*
+ hash*
CBOR Serialization

| Track Chunk m+2 | | Track Chunk| |

Track Chunk | Track Chunk|

c2pa box

Locate assertion & corresponding merkle row

from manifest using theuniqueld & localld string box_purpose = merkle

* uniqueld member of the chunk c2pa box. bit (8) data =
« localld
* initHash @ If the hash of the init segment usingalg &

count (# leaf nodes) exclusions|[] equals the initHash stored
. alg* along side the merkle tree row you just

« hashes[[* located, the initialization segment is verified.
Track #n Merkle Row e uniqueld
* localld
* The parametersalg & hash at the top level of the « location | Track Chunk m+4 |
manifest CBOR serialization are used for monolithic « hashes[]

MP4, whereasalg & hashes[] in the merkle tree row

objects are used for fragmented MP4. CBOR Serlallzatlcln

Track Chunk m+5 |

Figure 4. Verifying the initialization segment

Track #n
1 r 1 -
D13 Track #n Initialization Segment .
:
1 r 1
m n “ c2pa box ‘ Track Chunk m+1 ‘
| | | string box_purpose = manifest
M bit (B) data = ‘ Track Chunk m+2 ‘
Track Chunk m+3

The c2pa box in each Track's initialization segment will
contain the Manifest (which must be identical across
tracks). The Manifest's c2pa.bmff.hash assertion will
contain CBOR with an array of merkle rows, one per
track. We are looking at Track #n's merkle row, and in
this first example it contains row 2 — D2,0 and D2,1.

Array of Merkle tree rows @ Had the chg l_mx_CBOR serialization in the
Exclusions[] Track #n initialization segment only contained
% Row 3 - D3,0 — then chunk m+3's hashes[]
array would also contain D2,1. Hash D2,04.,eq
with D21 to yield D3 04erives.

+ alg
+ hash ¥

CBOR Senalization

//'

c2pa box

To complete verification of chunk m+3:

If 03,040,040 = D3,0 @s stored in the manifest's

stringbox_purpose =merkle

+ unigueld merkle row hashes[] parameter, and the bit (8) data=
(@) Hash chunk m+3 using the exclusions[] list « localld corresponding initialization segment was
and the merkle tree row object alg, yielding + initHash verified in step @, then chunk m+3 has been _
D0, 24eriveq- * count(#leafnodes) verified. A
. * .
@ Chunk m+3's hashes[] array will contain the alg - * uniqueld
hash of chunk m+4 {D0,3) and row one hash * hashes[] + localld
value D1,0. Track #n Merkle Row * location
* hashes[]
() HashD0.24..and D03 to vield D1, Tuerieq- * The parameters alg & hash at the top level of the CBOR Serialization ‘ Track Chunk m+4 ‘
Hash D1,0 with D1,1eriveq to yield D2, 0erive- manifest CBOR serialization are used for monolithic
@ p Dz_,Ddenved = D2,0as stored in the T‘S‘F’;, f\sﬁ\;;zar::rlfej;;il?esﬂ in the merkle row are ‘ Py —— ‘
manifest's merkle row hashes[] parameter,
and the corresponding initialization segment
was verified in step @, then chunk m+3 has .
been verified. :

Figure 5. Verifying the chunkOs data

8.2.3. Asset Metadata Bindings

In those workflows which embed XMP or other forms of asset metadata into the asset, the assetOs asset metadata

23

should not be excluded byata hash assertions

This means that by default all asset metadata (including Exif metadata and IPTC metadata in either IPTC-1IM or XMP
format) will be included in thedata hash assertionsbut with no provenance information such asho made the
claims.

To explicitly assert the same claims in a C2PA assertion with verifiable provenance, the Exif or IPTC fields should be
copied to astds.exif or stds.iptc.photo-metadata assertion, as appropriate (se8ection 17.13, OExif
InformationOandSection 17.14, OIPTC Photo MetadiitaO

NOTE We recommend that existing Exif, IPTC-IIM and/or XMP asset metadata be left untouched in the
asset. This will allow for compatibility with tools which do not yet support C2PA metadata.

8.3. Soft Bindings

Soft bindings are described usingoft binding assertionssuch as via a perceptual hash computed from the digital
content or a watermark embedded within the digital content. These soft bindings enable digital content to be
matched even if the underlying bits differ, for example due to an asset rendition in a different resolution or encoding
format. Additionally, should a C2PA manifest be removed from an asset, but a copy of that manifest remains in a
provenance store elsewhere, the manifest and asset may be matched using available soft bindings.

Because they serve a different purpose, a soft binding shall not be usedhasdabinding

All soft bindings shall be generated using one of the algorithms listed as supported by this specification. This section
defines both:

¥ A list of algorithms that are allowed for generating soft bindings of new content as well as required for validating
or locating existing content (the allowed list), and

¥ A list of algorithms that are required to be supported for validating or locating existing content but are not
allowed for generating soft bindings of new content (the deprecated list).

This list of allowed algorithms will define the string algorithm identifier to be used as the algorithm identifier in the
corresponding field and the content types over which it is applicable. In cases where there are different versions of an
algorithm, each will be defined using different string algorithm identifiers. Any technical documentation sufficient for
the soft binding algorithm to be implemented should be referenced.

Each algorithm should be defined along with the names and values of all parameters affecting the operation of that
algorithm. When doing so, it shall describe the manner in which those parameters must be encoded withadghe
params field of thesoft binding assertion An algorithm that is instantiated over a different parameter set will be
considered a different algorithm.

Each algorithm may also define an encoding scheme for specifying the portion of digital content over which a soft
binding is computed (namely, thextent field of thescope object within thesoft binding assertion. An algorithm
that encodes theextent differently will be considered a different algorithm.

24

It is recommended that the string identifiers for soft binding algorithms conform to how they are referred to in

common practice.

There are no soft binding algorithms defined in the approved list nor in the deprecated list in this version of the
specification.

The C2PA is currently evaluating various soft binding algorithms. One of the many possible options
includes thelSCC - International Standard Content Cadehe ISCC is an identifier and fingerprint for
digital assets that supports all major content types (e.g., text, image, audio, video). The ISCC uses is
similarity-preserving hashes generated both from metadata and content.

NOTE

25

https://iscc.codes/

Chapter 9. Claims

9.1. Overview

Aclaim gathers together all the assertions about an asset from an actor at a given time including the set of assertions
for binding to the content The claim is then cryptographically hashed and signed as describe8edntion 9.3.2.4,
OSigning a ClaimCA claim has all the same properties as an assertion including being assigned a label (
c2pa.claim). It can also either be embedded into the asset or stored remotely (e.g., in the cloud).

9.2. Syntax

TheCDDL Definitiorfor this type is:

; CDDL schema for a claim map in C2PA

claim-map = {

E "claim_generator": ua-formatted-str-type, ; A User-Agent string formatted as per
http://tools.ietf.org/html/rfc7231#section-5.5.3, for including the name and version of the
claims generator that created the claim

E "signature": jumbf-uri-type, ; JUMBF URI reference to the signature of this claim

E "assertions": [1* $hashed-uri-map],

E "dc:format": tstr, ; media type of the asset

E ? "dc:title": tstr .size (1..max-tstr-length), ; name of the asset,

E ? "instancelD": tstr .size (1..max-tstr-length), ; uniquely identifies a specific version

of an asset

E ? "redacted_assertions": [1* jumbf-uri-type], ; List of hashed URI references to the
assertions of ingredient manifests being redacted

E 2 "alg": tstr .size (1..max-tstr-length), ; A string identifying the cryptographic hash
algorithm used to compute all data hash assertions listed in this claim unless otherwise
overridden, taken from the C2PA data hash algorithm identifier registry. This provides the
value for the 'alg' field in data-hash and hashed-uri structures contained in this claim

E ? "alg_soft": tstr .size (1..max-tstr-length), ; A string identifying the algorithm used

to compute all soft binding assertions listed in this claim unless otherwise overridden,
taken from the C2PA soft binding algorithm identifier registry."

}

jumbf-uri-type = tstr .regexp "self#jumbf=[\\w\d][\w\\d\\./:-]+[\w\\d]"
; TO DO, check the specific requirement of the claim generator string

ua-formatted-str-type = tstr

An example iICBOR-Diads shown below:

26

https://datatracker.ietf.org/doc/html/rfc8610
https://www.rfc-editor.org/rfc/rfc8949.html#name-diagnostic-notation

{

E "claim_generator" : "Joe's Photo Editor/2.0 (Windows 10)"

E "signature" : "self#jumbf=c2pa/acme:urn:uuid:F9168C5E-CEB2- 4faa-BGBF-
329BF39FA1E4/c2pa.signature” ,

E "alg" : "sha256" ,

E "dc:format” : “imageljpeg”

E "assertions" 0

E {

E "url" : "self#jumbf=c2pa/acme:urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.assertions/c2pa.hash.data"

E "hash" : b64'U 9Gyz05tmpftkoEYP 6XYNsMnUbnS/chtAg 2w 7n1n8='
E 1}

E {

E "url" : "self#jumbf=c2pa/acme:urn:uuid:F9168C5E-CEB2-4faa-B6BF-
329BF39FA1E4/c2pa.assertions/c2pa.thumbnail.claim.jpeg”

E "hash" : b64'G 5hflwYeWTIfixOhmfCO 9xDAK52aKQ+YbKNhRZe®2 c='
E 1}

E |

E "url" : "self#jumbf=c2pa/acme:urn:uuid:F9168C5E-CEB2-4faa-B6BF-

3298F39FA1E4/c2pa assertions/c2pa.claim.ingredient"

E "hash" : b64'Yzag 405jO 4xPyfANViw 7ETIbFSWZNfeM78qu| 8Abkk="
E }
El
E "redacted_assertions" o
E “selftjumbf=c2pa/urn:uuid: 5E7BOlFC 4932-4BAB-AB32-
D4F12A8AA322/c2pa.assertions/stds.exif"
El
}
The Media Typeof the ingredient shall be declared idc:format . If present, the value odic:title shall be a

human-readable name for the asset.

If the asset contains XMP, then the assed®sMM:InstancelD should be used as thimstancelD . When no XMP
is available, then some othernique identifier for the asset shall be used as the valueifstancelD

Some field names, such afc:format andinstancelD have namespace prefixes as their names
NOTE definitions are taken directly from the XMP standard. However, their usage in C2PA does not require
the use of XMP.

The value of claim_generator is a human-readable string that will let a user know what
software/hardware/system produced this Claim. This field shall be present and its value shall be a string that
conforms to the User-Agent string format specified in section 5.5.343fTP/1.1 Semantics and Content

Thesignature field shall be present containing @RI referencdo aclaim signature

Theassertions field shall be present containing one or motéR| referencedo the assertionsbeing made by this
claim. At least one of these assertions must beaad binding assertion.

When present, theedacted assertions field shall contain one or mor&lR| referenceso redacted assertions

27

https://www.iana.org/assignments/media-types/media-types.xhtml
http://tools.ietf.org/html/rfc7231#section-5.5.3

9.3. Creating a Claim

9.3.1. Creating Assertions

Before the claim can be finalized, alksertionsmust be created and stored in a newly creat€®PA Assertion Store

This includes all of the content binding assertions that need to be present to ensure the asset is tamper-evident. A
claim shall include one or more content binding assertions in its list of assertions and the assetOs digital content (e.g.,
pixels in an image) shall not be excluded by any of the content binding assertions. It may still not be possible to know
all of the binding information at the time of claim creation, in which case use theltiple step processing methodo

setup and then later fill-in the information.

9.3.2. Preparing the Claim

9.3.2.1. Adding Assertions and Redactions

The claim shall contain thessertions field and its value is a list of all of the URI references for all assertions that
were added to the assertion store that are being "claimed" by this claim. At least one of the assertions shall be either a
data hash assertioror aBMFF-based hash assertion

If any assertions in ingredient claims are being redacted, their URI references shall be added to list which is the value
of theredacted_assertions field.

9.3.2.2. Adding Ingredients

In many authoring scenarios, an actor does not create an entirely new asset but instead brings in other existing assets

on which to create their work - either as a derived asset, a composed asset or an asset rendition. These existing assets
are called ingredients and their use is documented in the provenance data through the use iofbaadient assertion

When an ingredient contains one or more C2PA manifests, those manifests must be inserted into this asset to ensure
that the provenance data is kept intact. Such ingredient manifests are added to the JUMBF as descrilsesttion

10.1.1, OC2PA Box detailsO

9.3.2.3. Connecting the Signature

The signature cannot be part of the signed payload, but since its label is pre-defined, then the full URI reference is also
known. As such, we can include that in the claim by setting the value oftpeature field of the claim to that URI
reference.

NOTE This provides the explicit binding of the claim to its signature.

9.3.2.4. Signing a Claim

Producing the signature is specified iRection 12.2, ODigital Signaturedthe CBOR claim document as it appears in
the C2PA Claim box is the payload, and the "detached mode" is used to produC®@E_Signl structure. The
resulting COSE_Sign1 structure is written into the C2PA Claim Signature box.

28

A more typical structure would be to expand the claim schema to have a "to-be-signed” or "payload”

member which contains what is currently the entire claim schema, and then add an additional field

to contain the detached COSE signature. This is what X.509 does, and what COSE does in the default
NOTE (non-detached) case where the payload is included encoded as a field o€fB8E_Sign1 structure.

As there is no expectation CBOR is directly human-readable, the recommendation would be to use

the COSE_Signl structure with the payload included, as then there will be no need for C2PA to

specify its own container format for the signature.

9.3.2.5. TimeStamps

If possible, the signer should use a Trust Service Provider (specifically a Trusted TimeStamp Provider) to generate a
trusted token (time-mark or time-stamp token) proving that the signature itself actually existed at a certain date and
time and incorporate that into the signature. All timestamps shall be done as describe@dR316&as an unprotected
header parameter namedigTst in theCOSE_Signl structure following the definition inJAJES section 5.3.4

TheMessagelmprint for the TimeStampReq structure shall be computed by creating theoBeSigned value in
section 4.4 of RFC 8152, using "CounterSignature" as the context string fdBithestructure . Thepayload for

the Sig_structure is as described isection 9.3.2.4, OSigning a ClaifiBeToBeSigned value is then hashed
using an approved hash algorithm that the time stamping authority (TSA) supports, and that hash algorithm and
value are placed in theMiessagelmprint . ThecertReq boolean of theTimeStampReq structure must be
asserted in the request to the TSA, to ensure its certificate is provided in the response. The serialized content of the
TimeStampToken received in reply is then stored as tsegTst headerOs value.

The serialized content of th&imeStampToken received in reply shall then be stored as tlval property of a
tstToken element of thetstTokens array property of thestTokens element of thesigTst header as defined
by JAdES section 5.3.andits JSON schemaexcept with the modification that the content ofal is a byte string
containing the content of thelTimeStampToken , and not a Base64-encoded version of the same. ®t€okens
array shall contain at least one element.

Recall that an "unprotected" header only means it is not included in the protected payload of the
NOTE claim. A timestamp, like all countersignatures, is itself signed (and so brings its own integrity
protection) and has to be produced after the claim is signed, and so cannot be a part of the claimOs

protected payload.

9.3.2.6. Credential Revocation Information

If the signerOs credential type supports querying online credential status, and the credential contains a pointer to a
service to provide timestamped credential status information, the signer should query the service, capture the
response, and store it in the manner described for the signerOs credential type iffrthet Model If credential
revocation information is attached in this manner, a trusted timestamp must also be obtained after signing, as
described inSection 9.3.2.5, OTimeStampsO

29

https://tools.ietf.org/html/rfc3161
https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010101p.pdf
https://www.etsi.org/deliver/etsi_ts/119100_119199/11918201/01.01.01_60/ts_11918201v010101p.pdf
https://forge.etsi.org/rep/esi/x19_182_JAdES/raw/v1.1.1/19182-jsonSchema.json

